Astro 7B Discussion Worksheet 1

Spring 2021
By Nick Choksi, Andrea Antoni, and Kaela Lee

1. Proper motions At the center of our galaxy lies an incredibly bright radio source - Sgr A* ${ }^{1}$ originating from the central supermassive black hole.
(a) Given that the distance to the center of the galaxy is $R_{0}=8 \mathrm{kpc}$ and the circular velocity at the location of the Sun is $220 \mathrm{~km} / \mathrm{s}$. What is the proper motion of Sgr A*?
(b) Estimate how many years you would have to wait before you could detect the change in position of $\mathrm{Sgr} \mathrm{A}^{*}$ on the sky by-eye (if $\mathrm{Sgr} \mathrm{A}^{*}$ were bright enough to see by-eye). You can assume that a change in position of 1 radian is sufficient to detect the change in position.
2. Kepler on a merry-go-round (wheeeeee)
(a) Draw a rotation curve $(v(r)$ versus r) for Keplerian motion and for $\omega(r)=$ constant.
(b) Which rotation curve corresponds to our solar system? Which corresponds to a merry-goround?
(c) Determine how $M(r)$ scales with r for each rotation curve, assuming that gravity is making everything rotate.
(d) Which set of curves is differentially rotating?
(e) Take a merry-go-round initially at rest. Now spin it, but with a Keplerian velocity profile. What happens to the merry-go-round (a quick qualitative answer suffices)?
3. More rotation curves This question should help with, and give insight into, Problem 2, Homework 1. Consider a spherical mass distribution with a power-law density profile $\rho=k r^{\alpha}$, where k is just a "normalization" constant.
(a) Derive an expression for the mass enclosed within radius R.
(b) Derive an expression for the circular velocity as a function of radius.
(c) Detailed studies find that the dark matter density profile is most precisely described by the so-called Navarro-Frenk-White (NFW) profile ${ }^{2}$:

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{\frac{r}{R_{s}}\left(1+\frac{r}{R_{s}}\right)^{2}} . \tag{1}
\end{equation*}
$$

Plot $\rho(r)$ vs r / R_{s} using a plotting tool of your choice (ρ_{0} is an arbitrary normalization). From your plot and an examination of the limits you should understand why the case $\alpha=-2$ is commonly adopted as a simple approximation of the dark matter density profile ${ }^{3}$. This is why the Milky Way's rotation curve is roughly flat!

[^0]
[^0]: ${ }^{1}$ Pronounced "Sagittarius A-star". Because it is part of the name of an important astronomical object, this is the only horoscope name I know (and thank goodness for that!).
 ${ }^{2}$ First described in this classic paper: https://arxiv.org/abs/astro-ph/9508025
 ${ }^{3}$ In the literature, the case $\alpha=-2$ is given the fancy name "singular isothermal sphere". Why singular? Consider what happens at $r=0$. Why isothermal? Using $\rho(r), v(r)$ and Boltzmann's constant k, construct a quantity that has units of temperature. How does the temperature scale with radius?

