Astro 7B Discussion Worksheet 1

Spring 2021

By Nick Choksi, Andrea Antoni, and Kaela Lee

- 1. **Proper motions** At the center of our galaxy lies an incredibly bright radio source Sgr A^{* 1} originating from the central supermassive black hole.
 - (a) Given that the distance to the center of the galaxy is $R_0 = 8$ kpc and the circular velocity at the location of the Sun is 220 km/s. What is the proper motion of Sgr A*?
 - (b) Estimate how many years you would have to wait before you could detect the change in position of Sgr A* on the sky by-eye (if Sgr A* were bright enough to see by-eye). You can assume that a change in position of 1 radian is sufficient to detect the change in position.

2. Kepler on a merry-go-round (wheeeeee)

- (a) Draw a rotation curve (v(r) versus r) for Keplerian motion and for $\omega(r) = \text{constant}$.
- (b) Which rotation curve corresponds to our **solar system?** Which corresponds to a **merry-go-round**?
- (c) Determine how M(r) scales with r for each rotation curve, assuming that gravity is making everything rotate.
- (d) Which set of curves is differentially rotating?
- (e) Take a merry-go-round initially at rest. Now spin it, but with a *Keplerian* velocity profile. What happens to the merry-go-round (a quick qualitative answer suffices)?
- 3. More rotation curves This question should help with, and give insight into, Problem 2, Homework 1. Consider a spherical mass distribution with a power-law density profile $\rho = kr^{\alpha}$, where k is just a "normalization" constant.
 - (a) Derive an expression for the mass enclosed within radius R.
 - (b) Derive an expression for the circular velocity as a function of radius.
 - (c) Detailed studies find that the dark matter density profile is most precisely described by the so-called Navarro-Frenk-White (NFW) profile²:

$$p(r) = \frac{\rho_0}{\frac{r}{R_s} \left(1 + \frac{r}{R_s}\right)^2}.$$
(1)

Plot $\rho(r)$ vs r/R_s using a plotting tool of your choice (ρ_0 is an arbitrary normalization). From your plot and an examination of the limits you should understand why the case $\alpha = -2$ is commonly adopted as a simple approximation of the dark matter density profile³. This is why the Milky Way's rotation curve is roughly flat!

¹Pronounced "Sagittarius A-star". Because it is part of the name of an important astronomical object, this is the only horoscope name I know (and thank goodness for that!).

²First described in this classic paper: https://arxiv.org/abs/astro-ph/9508025

³In the literature, the case $\alpha = -2$ is given the fancy name "singular isothermal sphere". Why singular? Consider what happens at r = 0. Why isothermal? Using $\rho(r), v(r)$ and Boltzmann's constant k, construct a quantity that has units of temperature. How does the temperature scale with radius?