
1 Astro 7A, Week 3

1. Telescopes

(a) Consider the planned Thirty Meter Telescope (TMT) and your typical 10 inch at-home telescope.
Suppose the TMT collects N = 105 photons after staring at an object for ∆t = 100 seconds.
How long would you have to stare with your at-home telescope to collect the same number of
photons? The light gathering power (LGP) ∝ D2. The number of photons you collect
is proportional to the light gathering power (i.e., number of photons per second you
collect) multiplied by the TIME that you’re staring at the object. In other words:
Nphot ∝ LGP∆t
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We have D1 = 30m and ∆t1 = 100 seconds. Also D2 = 10 inches. Solve for ∆t2!

(b) If I am observing with the TMT at 500 nm, what wavelength would I have to observe at with
my at-home telescope to achieve a comparable diffraction limit (read: resolution)? Comment on
whether this would even be possible with your at-home telescope.

θc ∼ λ/D. For the resolutions to be the same, we require the θc of both telescopes to
be equal:
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We have λ1 = 500 nm and D1 = 30 m and D2 = 10 inches. Solve for λ2.

(c) Globular clusters are clusters of stars with ∼ 105 stars confined to a region of ∼ 1 pc. (Most)
globular clusters in our galaxy live in the far reaches of the galaxy, at about ∼20 kpc from the
Galactic center (our Solar System is located about 8 kpc from the center). Will the TMT be able
to tell apart individual stars in a globular cluster in our galaxy? How about in a galaxy d = 20
Mpc away? To tell if the TMT will be able to tell apart individual stars, we need to
calculate the typical θsep of stars in the cluster. θsep ∼ s/d. What is the typical physical
separation s? A good rule of thumb is that a typical interparticle spacing in a system
is roughly n−1/3, where n is the number density. We can calculate the number density
as n ∼ N/R3. Therefore n−1/3 ∼ 0.02 pc. So we have to calculate θsep ∼ 0.02pc/20kpc. We
have to compare this θsep to θc for the TMT to determine if we will be able to resolve
individual stars in the cluster. If θsep < θc then the stars will be unresolved and they
will all blur together. If vice-versa, you will be able to actually resolve individual stars
in the cluster.

(d) Suppose I observe a galaxy of diameter D = 1 kpc at a distance away d = 1 Mpc. If the TMT will
have a plate scale of 0.06 arcseconds/pixel, over how many pixels will the galaxy image be spread
out?

(e) Stars Alex and Ben are exactly the same, except that Star Ben has half the diameter of Star Alex.
Suppose we use Telescope A to collect photons from Star Alex, and register 10 photons per second.
How much larger must the diameter of Telescope B be to observe Star Ben and still register 10
photons per second? The luminosity is ∝ R2. Since Ben has half the diameter it has
one-fourth the luminosity. To make up for this, we need Telescope B to be larger. The
light gathering power is ∝ D2, therefore we need a telescope that is twice as large.

(f) I put a filter on my telescope. Suppose the sensitivity function of the filter is Gaussian, centered
on λ1
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If I shine light onto the telescope with a flat spectrum Fλ = k, write down an expression for the
total flux through the filter.
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Just do the integral with Sλ as given.

(g) Does the colour of the object depend on how far away I put it1? No – light falls off as 1/r2

independent of the wavelength of the photon. Therefore even though the object ap-
pears to dim as 1/r2, all wavelengths suffer equally, and therefore the relative amounts
of flux in each waveband (i.e., the colour) stay the same.

2. General Kepler

(a) Consider two planets with periods P1 and P2 (same central mass M?). What is the ratio of their
semi-major axes? P ∝ a3/2 by Kepler III therefore P1/P2 = (a1/a2)3/2.

(b) Consider two planets of mass m1 and m2 both with the same a around the same object of mass
M? � m1, m2. What is the ratio of their periods? P ∝ 1/(M? + mP ). But M? � mP so the
periods are the same, to first order. But if you look in detail and account for the mass
of the planet, then the more massive planet will have a slightly shorter period.

(c) Derive an expression for the angular frequency ω of an object of mass m in circular orbit around
M � m. And again for an elliptical orbit. ω =

√
GM/r3. Useful expression to keep in your

back pocket.

(d) Halley’s comet is a regular comet with eccentricty e = 0.967 and its closest approach to the Sun
is 0.59 AU. What is Haley’s comet’s greatest distance from the Sun? Semi-major axis? The
cloest approach is periapse and is given by: rp = (1 − e)a → a = rp/(1 − e) which
allows us to solve for a. Then plug into equation for apoapse, the farthest distance:
ra = (1 + e)a = rp(1 + e)/(1− e).

(e) Show that the total energy of a Keplerian orbit can be written as:
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The full derivation of this is given in Ryden – I’ll defer to the Chapter on Keplerian
orbits in the book.

3. Accretion disks Consider a little packet of mass ∆m in a Keplerian orbit around a central mass M
(spherical, with radius R) at radius ai.

(a) Write down an expression for the total orbital energy of the system. Just Keplerian: E =
−GMm/2a.

(b) Now suppose the little mass packet ∆m experiences a little “friction” in its orbit. Does a decrease
or increase over time? Friction takes energy OUT of the system, so E has to decrease.
E ∝ −1/a so for energy to decrease a has to decrease.

(c) Eventually the mass packet ∆m falls onto the central object (recall the central object has radius
R). Write down again an expression for the change in orbital energy ∆E between the initial
position of the mass packet and final position. Also simplify your expression by assuming ai � R.

The Keplerian orbital energy as the mass packet reaches the central object is E =
−GM∆m/R. The change in energy is:

∆E = −GM∆m
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But since we’re told a � R, we can drop the second term (negligible) and we get
∆E ≈ −GM∆m

R .

(d) Now suppose I have not one, but many little mass packets falling in over a timespan ∆t. What is
the resulting orbital energy released per time: L ≈ ∆E

∆t ≈
GM∆M
R∆t . Note that ∆m/∆t ≡ Ṁ is

the “accretion rate” so that we can write:

L ≈ GMṀ

R
. (7)

1For the aficianados: ignore all cosmological effects.
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The released orbital energy has to go somewhere. Where does it go?? It ends up
being released in the form of photons: this is known as the “accretion luminosity” –
as a central object accretes matter, the matter releases orbital energy that can then
shine! You will learn more about this in Astro 7B, but this ends up being the reason
(paradoxically) that black holes are some of the brightest objects in the universe!

4. Event horizon

(a) Consider a little mass ∆m around a black hole of mass M , located at radius R (the mass is NOT
in orbit, it is just sitting still!). Derive the radius of the event horizon of the black hole by setting
the total energy of mass m equal to zero and setting v = c. mv2/2 = GMm/r → Rsch = 2GM/c2.
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