1 Astro 7A, Week 3

1. Telescopes

(a) Consider the planned Thirty Meter Telescope (TMT) and your typical 10 inch at-home telescope. Suppose the TMT collects $N=10^{5}$ photons after staring at an object for $\Delta t=100$ seconds. How long would you have to stare with your at-home telescope to collect the same number of photons?
(b) If I am observing with the TMT at 500 nm , what wavelength would I have to observe at with my at-home telescope to achieve a comparable diffraction limit (read: resolution)? Comment on whether this would even be possible with your at-home telescope.
(c) Globular clusters are clusters of stars with $\sim 10^{5}$ stars confined to a region of $\sim 1 \mathrm{pc}$. (Most) globular clusters in our galaxy live in the far reaches of the galaxy, at about $\sim 20 \mathrm{kpc}$ from the Galactic center (our Solar System is located about 8 kpc from the center). Will the TMT be able to tell apart individual stars in a globular cluster in our galaxy? How about in a galaxy $d=20$ Mpc away?
(d) Suppose I observe a galaxy of diameter $D=1 \mathrm{kpc}$ at a distance away $d=1 \mathrm{Mpc}$. If the TMT will have a plate scale of 0.06 arcseconds/pixel, over how many pixels will the galaxy image be spread out?
(e) Stars Alex and Ben are exactly the same, except that Star Ben has half the diameter of Star Alex. Suppose we use Telescope A to collect photons from Star Alex, and register 10 photons per second. How much larger must the diameter of Telescope B be to observe Star Ben and still register 10 photons per second?
(f) I put a filter on my telescope. Suppose the sensitivity function of the filter is Gaussian, centered on λ_{1}

$$
\begin{equation*}
S_{\lambda}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\lambda-\lambda_{1}\right)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

If I shine light onto the telescope with a flat spectrum $F_{\lambda}=k$, write down an expression for the total flux through the filter.
(g) Does the colour of the object depend on how far away I put it ${ }^{1}$?
2. General Kepler
(a) Consider two planets with periods P_{1} and P_{2} (same central mass M_{\star}). What is the ratio of their semi-major axes?
(b) Consider two planets of mass m_{1} and m_{2} both with the same a around the same object of mass $M_{\star} \gg m_{1}, m_{2}$. What is the ratio of their periods?
(c) Derive an expression for the angular frequency ω of an object of mass m in circular orbit around $M \gg m$. And again for an elliptical orbit.
(d) Halley's comet is a regular comet with eccentricty $e=0.967$ and its closest approach to the Sun is 0.59 AU. What is Haley's comet's greatest distance from the Sun? Semi-major axis?
(e) Show that the total energy of a Keplerian orbit can be written as:

$$
\begin{equation*}
E=\left(\frac{G M m}{L}\right)^{2} \frac{m}{2}\left(e^{2}-1\right) \tag{2}
\end{equation*}
$$

3. Accretion disks Consider a little packet of mass Δm in a Keplerian orbit around a central mass M (spherical, with radius R) at radius a_{i}.
(a) Write down an expression for the total orbital energy of the system.
(b) Now suppose the little mass packet Δm experiences a little "friction" in its orbit. Does a decrease or increase over time?

[^0](c) Eventually the mass packet Δm falls onto the central object (recall the central object has radius R). Write down again an expression for the change in orbital energy ΔE between the initial position of the mass packet and final position. Also simplify your expression by assuming $a_{i} \gg R$.
(d) Now suppose I have not one, but many little mass packets falling in over a timespan Δt. What is the resulting luminosity?

4. Event horizon

(a) Consider a little mass Δm around a black hole of mass M, located at radius R (the mass is NOT in orbit, it is just sitting still!). Derive the radius of the event horizon of the black hole by setting the total energy of mass m equal to zero and setting $v=c$.

[^0]: ${ }^{1}$ For the aficianados: ignore all cosmological effects.

