
1 Astro 7A, Week 2: Blackbodies

1. Planck is your friend Consider the Planck function in frequency space:

Bν =
2hν3

c2
1

exp(hν/kbT )− 1
. (1)

(a) What are the units of Bν? Which of the following does Bν constitute: a luminosity, flux, intensity,
flux density, specific intensity? Bν has units of erg/(second cm2 Hz sr). It is a specific
intensity for blackbodies.

(b) Derive Bλ from Bν . Use Bλdλ = Bνdν → Bλ = Bνdν/dλ, where c = λν → dλ/dν = c/ν2.

(c) Derive simplified expressions for Bν in the limit of high and low-energy photons (also: what specif-
ically do I mean by “high” and “’low” energy here? high and low energy relative to what?). Take
the limit hν � kT and hν � kT . In the limit hν � kT , the −1 in the Planck function be-
comes negligible. Therefore Bν ≈ (2hν3/c2) exp(−hν/kT ). In the opposite limit hν � kT
then the exponential term becomes tiny. We can taylor expand ex ≈ 1 + x for x� 1 so
that Bν ≈ (2ν2/c2)kT .

(d) Roughly sketch the spectra (on the same plot) of two blackbodies with temperatures T1 and T2,
where T2 > T1.

2. Stars galore

(a) Suppose you observe two stars, Star Dan and Star Aliza. Dan is hotter and brighter than Aliza.
Can you say which star is larger? No, we cannot determine which star is larger. The
luminosity depends on the radius and the temperature. We know star 1 is brighter
and hotter. Maybe star 1 is also larger, in which case both its radius and temperature
contribute to making it brighter than star 2. Or, maybe star 1 is smaller than star 2,
but its so hot that it makes up for being smaller by a large increase in its temperature.
So, in this case you can’t be sure which star is larger until I give you specific values.

(b) Now suppose I tell you that Dan and Aliza are at the same distance away from you. You put
a red filter on your telescope and observe both stars. From which star will you record a greater
flux? You will receive more flux from star Dan. This tends to trip people up. Even
though Aliza is cooler and therefore peaks at redder wavelengths, hotter blackbodies
emit more at ALL wavelengths – i.e., the blackbody curves for two objects of different
temperatures NEVER overlap.

(c) Star Ben is twice as hot as Star Jamie but three times fainter. If they are at the same distance,
what is the ratio of the radii of the two stars?

3. Not everything is a sphere, sadly Consider a thin disk of gas (read: accretion disk around, e.g., a
black hole). Assume the disk emits like a blackbody, and has a temperature profile T (r) = kr−1/2 (k is a
constant) from an inner disk boundary located at Rmin to the outer disk edge located at Rdisk. Calculate
the total luminosity of the disk (hint: integrate). This is an example of a problem where we cannot
simply set the area of our blackbody to A = 4πR2. But note that this isn’t some contrived example just
to make you suffer – accretion disks are ubiquitious in astrophysics (perhaps the second most common
geometry, after spheres). The infinitesimal luminosity is dL = F (r)dA. In this case, we are
interested in a disk so we will integrate in terms of rings then dA = 2πrdr. Integrate to get
the total luminosity:

L =

∫
dL =

∫
F (r)2πrdr. (2)

recall F (r) = σT 4 = σk4r−2. Plug into the above expression and integrate away from Rmin

to Rdisk.

4. Things moving in space I: Doppler



(a) Consider a star moving in a circular orbit1, such that at some times the star is moving directly
away from us, and at others it is moving directly towards us2. We use the Doppler shift of the
star’s spectrum to infer the velocity at many different times. Sketch what the (observed) velocity-
time graph looks like (alternatively, plot ∆λ as a function of time).Sinusoidal oscillation. The
peak of the sine curve will be at +v and the trough at −v. Why sinusoidal? Because
at some times the object is moving directly away from you, at other times directly
towards you. And yet at other times, the motion is completely tangential and there is
no radial velocity component – recall Doppler only picks out radial velocity!

(b) Now suppose we (magically) tilt the orbital plane relative to you, the observer (I will draw this on
the board). Overplot on your original sketch what the (observed) velocity-time graph would look
like. Now less of the velocity magnitude will be along the line of sight. Therefore the
maximum Doppler shift you can pick up is v multiplied by a geometric factor which is
less than one (so the amplitude of the sine wave decreases). Sketch a picture and see
if you can work out what that geometric factor is!

5. Things moving in space II: Proper motions. “Barnard’s star” is the star in our night sky with the
largest proper motion3. Since 1985, Barnard’s star has moved 10.3 arcseconds/yr. Barnard’s star has
a parallax of 547 mas. How fast is the star moving? Also: explain why, in general, measuring full 3-D
space velocities requires a lot of patience4. Use vT = µd. Calculate d from d = 1/p – you’re given
the parallax. µ is just the proper motion, which is given to be 10.3 arcseconds/yr. Plug
and chug to find the TANGENTIAL component of the velocity only. Why does it take
so long to measure full 3D space velocities? To get the radial component of the velocity
is quick – just take a spectrum and measure vr from the Doppler shift (see next part).
But proper motions take a long time to measure! To see this, consider Barnard’s star
which has the LARGEST proper motion of ANY star in the sky, and it is still only ∼10
arcseconds/yr. Remember that there are 206265 arcseconds in a radian – so this is still a
pretty small angular shift on the sky! Most other stars have even smaller proper motions.
Therefore you have to wait a while for the star to have an appreciable angular shift.

6. Things moving in space III: All together now Finally, suppose you observe a wavelength shift in
Barnard star’s spectrum of ∆λ ≈ 1.8 Angstroms at λ = 5000 Angstroms. What is the full 3-D velocity of
Barnard’s star?. You can calculate the radial component of the velocity vr from the Doppler
shift equation c∆λ/λ = vr. You’re given ∆λ/λ and therefore you can calculate vr. The total
v is given by summing in quadrature: v =

√
v2T + v2r .

1Perhaps the star is in a binary system and orbiting the common center of mass of the binary, as we will discuss more this
week.

2More precisely, we say that the plane of the orbit is “edge-on” relative to the observer.
3Check out the wikipedia article on Barnard’s star for a really cool animation.
4To give you a sense of this, the Gaia space telescope set out to measure proper motions over the course of ∼10 years!
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