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1. SHOCKS

1.1. Basic Physics

We treat shocks with the following assumptions:

1. Shocks are one-dimensional.

2. We develop equations in the rest frame of the shock.

3. We assume that the flow is semi-infinite, that is that the incoming (pre-shock, upstream)

gas extends to infinity, as does the post-shock, downstream gas.

4. The shock is steady state: the flow has been going on forever and looks the same now as it

always did.

5. We denote the upstream, pre-shock gas with subscript 1 and the post-shock gas with

subscript 2.

6. The gas can by characterized by specific heats, with p ∝ ργ ; γ = 5/3 for a monatomic gas,

which is what we usually assume and for which numbers are given below.

7. The isothermal speed of sound is

c2 =
p

ρ
. (1)

The adiabatic speed of sound, which is the usual one because sound waves are much faster than

heating/cooling, is c2γ = γp
ρ = γc2. These sound speeds can be expressed in terms of temperature,

because p = nkT = ρkT/µ, where µ is the mean atomic weight (equal to 1.7× 10−24 gm for a gas

consisting of H atoms and 0.85× 10−24 gm for ionized hydrogen gas):

c2 =
kT

µ
. (2)

With these assumptions, all time derivatives are zero. We have three fundamental conservation

relations that apply to the gas as it crosses the shock:

1.2. Conservation of Mass

The mass flow rates across unit area on each side are equal.

ρ2v2 = ρ1v1 (3)
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1.3. Conservation of Momentum

Newton’s law: the pressure difference (force) is equal to the time rate of change of momentum.

p2 + ρ2v
2
2 = p1 + ρ1v

2
1 (4)

Note that p and ρv2 have the same units: pressure. The quantity ρv2 is the pressure exerted by a

blowing wind and is called the ram pressure. The ram pressure is less than the thermal pressure

(p = ρc2) unless the wind is supersonic. It is often convenient to write the momentum equation

ρ2(c
2
2 + v22) = ρ1(c

2
1 + v21) (5)

1.4. Conservation of Energy

The energy per unit mass on side 2 is equal to that on side 1, minus any energy that has been

radiated in going across the boundary. The contributions to energy per unit mass are (1) internal

energy, equal to P
(γ−1)ρ = c2

(γ−1) =
3kT
2µ ; (2) PV energy (the PdV work required to compress the

gas), equal to P
ρ = c2 = kT

µ ; (3) kinetic energy, equal to v2

2 .

The internal energy and the PV energy add together to give the enthalpy H = γP
(γ−1)ρ = 5

2c
2,

which is the physically meaningful quantity for energy in this case.

The instantaneous energy loss rate per unit volume is n2Λ, so the energy loss rate per unit

mass is nΛ
µ and the total energy loss per unit mass is 1

µ

∫

nΛdt. Note that 1
µ

∫

nΛdt can be rewritten

by multiplying and dividing by nv and using the facts that (1) the path length ds = vdt and (2)

ρv is constant, yielding 1
µ

∫

nΛdt =
∫

n2Λds. Putting all this together we get

γ2
γ2 − 1

c22 +
1

2
v22 =

γ1
γ1 − 1

c21 +
1

2
v21 −

∫

n2Λds (6)

With regard to conservation of energy, we have two types of shock: in the nonradiative or

adiabatic shock, the radiative term
∫

n2Λds is negligible. In the radiative shock it is very important

and cannot be neglected.

A special case of a radiative shock is an isothermal shock, in which the heating and cooling

processes on each side are the same so that the temperatures on each side are the same. In this

case the energy equation is just T2 = T1, or c
2
2 = c21.

The loss term need not be positive: if it is negative, then there is energy gain and we have

a detonation front. For example, if someone leaves the gas stove on and you walk in and strike a

match, you generate a shock within which the oxygen and gas burn explosively and release energy
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in the front. Another example occurs in astronomy: the front that separates the ionized HII region

gas from the neutral gas.

2. THE SHOCK EQUATIONS

2.1. Shocks of Arbitrary Strength

The solutions to the above equations (nonradiative case) are usually written in terms of the

Mach numberM = v1/cγ,1 = v1/γ
1/2c1. Note that M is defined relative to the upstream, unshocked

gas; think of the case of a supersonic jet! The following solution assumes γ2 = γ1 and µ2 = µ1:

ρ2
ρ1

=
(γ + 1)M2

(γ − 1)M2 + 2
(7)

p2
p1

=
2γ

γ + 1
M2 −

γ − 1

γ + 1
(8)

T2

T1
=

p2/p1
ρ2/ρ1

(9)

If M ≥ 1, as is required for ρ2/ρ1 > 1, then we have a shock.

2.2. Strong Nonradiative Shocks.

In astronomy, we normally deal with HII regions and supernovae, which provide large pressures

or energies: this is the case of a strong shock. In a strong shock, M ≫ 1; alternatively, p2 ≫ p1.

One can generate the solutions for a strong shock easily from equations 7 - 9 simply by considering

the limit M → ∞.

However, there is a better way to picture a strong shock. Consider the momentum and energy

equations 5 and 6. In a strong shock, v21 ≫ c21. In other words, the thermal pressure of the

unshocked gas is negligible compared to its ram pressure, and the thermal energy of the unshocked

gas is negligible compared to its kinetic energy. For a strong shock, the right hand sides of the

momentum and energy equations simplify because the terms involving c21 can be neglected, and one

can solve the equations rather more easily than in the general case.

The solutions for a strong nonradiative shock for the case γ = 5/3 are:

ρ2
ρ1

= 4 (10)
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p2
p1

=
3

4

v21
c21

(≫ 1) (11)

p2 =
3

4
ρ1v

2
1 (12)

T2

T1
=

3

16

v21
c21

(13)

kT2 =
3

16
µ2v

2
1 (14)

Note that p2 and T2, which express the energy content of the post-shock gas, depend only on v1
and not on c1; their expressions can be written not in terms of ratios involving c1. This is a direct

consequence of the “better way to picture a strong shock” mentioned in the above paragraph.

2.3. Strong Isothermal Shocks.

The solutions for a strong shock for the isothermal shock case can be generated from equations

7 - 9 by setting γ = 1, because in an isothermal shock p ∝ ρ and, with the definition of γ as p ∝ ργ ,

γ = 1 in an isothermal shock. Or, of course, one can solve the fundamental equations of mass,

momentum, and energy for this special case. The solutions are:

ρ2
ρ1

=
v21
c21

(≫ 1) (15)

p2
p1

=
v21
c21

(≫ 1) (16)

p2 = ρ1v
2
1 (17)

and, of course,

T2 = T1 (18)
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2.4. Energy Conservation in the Nonradiative Shock.

In the nonradiative shock, the energy loss term is zero by definition. Consider the three

contributions to energy, written on a per particle basis. In the post-shock gas, these must add up

to the total energy per particle in the pre-shock gas. For a strong shock, the thermal energy in the

pre-shock gas is negligible, so the total energy per particle in the pre-shock gas is just µv21/2.

1. Internal thermal energy. This is just 3
2kT per particle. From equation 9,

3

2
kT2 =

9

16

µv21
2

(19)

2. PV energy. This is just kT per particle:

kT2 =
6

16

µv21
2

(20)

3. Kinetic energy. This is just

µv22
2

=
1

16

µv21
2

(21)

The sum is the full 16
16 . Fortunately, energy is conserved! In balancing the energy, it is easy to

forget the PV energy. If one uses enthalpy, the energy accounting is easier.

2.5. Structure of Radiative Shocks.

A shock is instantaneous (in the context of the present discussion). However, the energy loss

term involves an integration over time, and is not instantaneous. Immediately after crossing the

shock front, there has been no time for radiation and the loss term is zero. Thus, the gas just

behind the shock has not radiated and is subject to the nonradiative shock relations, equations 10 -

14. As the gas moves away from the shock, the loss term becomes larger and the gas cools off. In

extreme cases (which happen frequently in astronomy), it will cool to its initial temperature and

the shock will, in the final analysis, be isothermal.

By comparing the solutions for nonradiative (equations 10 - 14) and isothermal (equations 15

- 18) shocks, we see that the densities and temperatures change by large factors during the cooling

process. However, the pressure changes only by 25%. This is a relatively small change, and allows

one to approximate the cooling as taking place at constant pressure. Thus, one can calculate the

cooling using the specific heat at constant pressure cp; on a per-particle basis, cp =
5
2k so that one

can write
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d(52kT )

dt
= −nΛ (22)

As the gas cools under nearly constant pressure, it gets denser with ρ ∝ T−1. As the gas

gets denser, the mass conservation equation (S3) means it must move more slowly. Physically, this

deceleration requires a force. This force is the increased pressure (the pressure in the isothermal

region is 25% higher than that in the nonradiative region). Everything fits together.

2.6. Velocities in the Frame of the Universe

All the velocities discussed above are with respect to the shock. However, we are most often

concerned with velocities in some other frame. Usually we consider the ambient, unshocked, up-

stream gas as residing in the frame of the universe, with the shock moving through it with velocity

ushock; clearly, ushock = −v1. In this “universe” frame of the unshocked gas, the post-shock gas

moves at velocity 3
4ushock for a nonradiative shock and (1−

c2
1

u2

shock

)ushock ≈ ushock for an isothermal

shock.

Converting among these coordinate systems requires care in adding and subtracting speeds

because you must constantly keep in mind the directions in which things are moving. As the

homework problems show, this is not always easy.

3. BLAST WAVES.

Blast waves are the result of the release of a large amount of energy E in a uniform medium

of mass density ρ, such as happens on Earth with a nuclear bomb explosion and as happens in

astronomy with a supernova in the interstellar medium. It is also possible to treat cases in which ρ

depends on distance from the explosion to an arbitrary power, but we will forgo this generalization.

Blast waves create huge pressures which drive shocks into the ambient medium. In the initial

stages, the radiative loss is small so the shocks can be regarded as adiabatic. In the latter stages

the shocks are radiative and approximately isothermal.

3.1. Nonradiative Blast Wave: the Sedov-Taylor Case.

In the initial stages, the total energy E inside the spherical shock remains constant because

there is no radiation. Furthermore, the physics of strong shocks tells us that a constant, fixed

fraction f of the energy goes into kinetic energy of the post-shock gas. As measured in the frame

of the shock, f = 1
16 .
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Let M be the swept-up mass; M = 4π
3 R3

s. In the frame of the shock, the kinetic energy is

KE = M(vs/4)2

2 ; the enthalpy is 15 times larger, so H = 15M(vs/4)2

2 . In the frame of the universe, H

remains unchanged but the kinetic energy is 9 times larger. In the frame of the universe, the total

of H and KE must equal E; thus

24M(vs/4)
2

2
= E (23)

We now use M = 4π
3 R3

s and vs =
dRs

dt and obtain

R3
sv

2
s =

E

πρ
(24)

The solution to this is

Rs =

(

25E

4πρ

)1/5

t2/5 (25)

vs =
2

5

(

25E

4πρ

)1/5

t−3/5 (26)

Note that the total kinetic energy KE ∝ ρR3
sv

2
s and is independent of time, as it must be

under these conditions.

The above solutions were first obtained by the Russian and British theorists Sedov and Taylor.

According to popular legend, these foreign scientists developed this theory (independently) in an

afternoon and applied it to the photographs of the first nuclear test blast published in Life magazine

in the mid 1940’s, just after WWII. Life conveniently provided enough information (timescale,

size) for them to derive E (of course, they already knew the ambient density of air ρ). Taylor

sent his result to a widely-circulated British newspaper (the London Times?) and the American

government became very upset, suspecting a major leak of information. If this story is true, it may

have contributed significantly to the long-standing policies of the American government regarding

military secrecy, which have been regarded by many as unnecessarily strict.

3.2. Later Radiative Stages

The radiative portion can be divided into two stages. In the first, the outer shell radiates while

the hot interior, which is at a lower density and higher temperature, doesn’t radiate significantly.

In this case, the hot interior evolves adiabatically with p ∝ ργ = ρ5/3 ∝ R−5
s . The shell momentum

is Ps = Mvs = 4π
3 ρR3

svs. The shell evolves according to Newton’s law, F = dPs

dt ; the force is
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4πR2
sp ∝ R−3. With this, the subsequent evolution of the shell is Rs ∝ t2/7. This is called the

“pressure-dominated snowplow” phase.

Eventually even the hot interior cools off and its pressure becomes negligible. In this case the

dense shell coasts through the interior, and we have the “snowplow” phase: the total momentum

is constant, with dMvs
dt = 0. This leads to Rs ∝ t1/4.

3.3. Application to Astronomy

A supernova releases about E = 1051 erg, or E51 = 1. The average volume number (not mass)

density of the interstellar medium is about 1 H-atom per cm3. Writing the nonradiative equations

normalized to these appropriate units with µ = 1.7× 10−24 gm, we obtain

Rs = 12.5

(

E51

n

)1/5

t
2/5
4 pc (27)

vs = 490

(

E51

n

)1/5

t
−3/5
4 km/s (28)

Ts = 3.3× 106
(

E51

n

)2/5

t
−6/5
4 K (29)

Here t4 is the time in units of 104 years.

The Cygnus Loop is the closest spectacular remnant. It is about 2 degrees in diameter, 4

times larger than the Sun and Moon. Its linear radius is about 18 pc, its age about 18000 yr. Its

temperature is about 3×106 K, and it is just leaving the nonradiative phase; parts of its shell have

cooled enough to emit brightly in the optical region, where the gas physics is very similar to that

of HII region gas. The hot interior, at several million degrees, emits soft X-rays strongly.

The Cygnus Loop is the result of a single supernova. However, supernovae come from mas-

sive stars which have short lifetimes. Such stars tend to be borne in clusters. Suppose that N

supernovae cluster in space and time; for the present purposes, we can approximate this as a single

superexplosion with energy N × 1051 erg. Most clusters are small, but a small minority are huge;

the largest contain about N = 6000 supernovae, but at any one time in a typical Galaxy here

is only one such cluster. As a rough approximation, the total energy injected is E51 = N and

the shells expand until their velocities drop to somewhat more than the mean sound speed in the

ambient interstellar medium, or to about 15 km/s. The shells produced by such clusters become

very large, larger than the thickness of the gaseous disk of a spiral galaxy, and blow huge holes into

the disk. These affect the physics of the interstellar medium, the gaseous galactic halo, and the

overall chemical evolution of the galaxy.


