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1. INTRODUCTION AND BASIC DEFINITIONS

We write the equation of transfer

dIν

ds
= ǫν − κνIν (1)

where ds is positive towards the observer, and we normally define two quantities, the optical depth

(opacity) τν and the source function Σν :

dτν = −κds (2a)

Σν =
ǫν

κν
(2b)

Notice that dτ is positive away from the observer. That is, we speak of the front surface of a cloud,

or star, as as having optical depth zero, while somewhere in the deep interior of a cloud has s = 0.

With this, the equation of transfer becomes

dIν

−dτν
= Σν − Iν (3)

For a discussion of general solutions, see Mihalis.

Consider the LTE case in which the emission process is described by a single temperature

T . Then Σν = Bν(T ). In realistic ISM conditions, this temperature is not necessarily the kinetic

temperature because collisions may not dominate the distribution. So, more generally, we define

the excitation temperature Tx as that temperature that gives us the proper population ratio n2

n1
. (Here

we consider a two-level system with the upper level being 2 and the lower 1). Thus,

Σν = Bν(Tx) (4)

In the case of a single two-level system, we do not need Tx = TK ; in the case of a multiple level

system, such as a molecule, each pair of levels can have a different Tx and, moreover, the ratios n3

n1

and n3

n2
can have different Tx! So this use of Tx is completely general.

2. EXPRESSING IN TERMS OF EINSTEIN COEFFICIENTS

2.1. Some Important Relationships among Einstein Coefficients

The standard relationships among the Einstein coefficients are



– 3 –

A21 =
2hν3

c2
B21 (5a)

B21

g1
=

B12

g2
(5b)

Now define the energy of the emitted photon in temperature units, the transition temperature is

T21 =
hν

k
(6)

and consider an atom sitting in a blackbody radiation field whose temperature is T21. The ratio of

the downward radiatively induced rate to the downward spontaneous rate is

B21J

A21

=
B21Bν(T21)

A21

=
1

e1 − 1
= 0.6 (7)

Thus we reach the important conclusion that for a transition in a a radiation field having J =

Bν(T21), the induced rate is nearly equal to the spontaneous rate. Of course, this conclusion is

hardly new: it appears in the basic reasoning Einstein used to derive his famous coefficients.

2.2. Emission and Absorption coefficients in terms of Einstein Coefficients

For spectral lines, we can express ǫ and κ in terms of the Einstein coefficients. For a spectral

line, κν contains the information on line shape. Einstein coefficients give total emission/absorption

integrated over the whole line, so they tell us κνdν. Then

∫

ǫνdν =
hν

4π
n2A21 (8a)

expresses the rate of photon emission per steradian times the photon energy, and
∫

κνdν =
hν

4π
(n1B12 − n2B21) (8b)

expresses absorptions minus stimulated emissions: κ is the net absorption, accounting for stimulated

emission from the upper level. This means that κ depends on Tx.

With the standard relationships among the Einstein coefficients, and the Boltzmann distribu-

tion n2

n1
= g2

g1
e−hν/kTx (Note the x in Tx !!), we have

∫

κνdν = n2

A21c
2

8πν2
(ehν/kTx − 1) (9a)
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or, in terms of the total number of atoms (not just those in the upper state),

∫

κνdν = ntot
A21c

2

8πν2
g2

g1

1− e−hν/kTx

1 + g2
g1
e−hν/kTx

(9b)

Combining these, we find the source function, which (as it must be) is just Bν(Tx). :

There is some important behavior to notice in the above equation. If Tx → ∞, then κ → 0; in

this limit, stimulated emissions just cancel absorptions so κ → 0. If Tx → 0, then all the atoms go

to the ground state 1, so there are no stimulated emissions and

∫

κν,Tx=0dν = ntot
A21c

2

8πν2
g2

g1
(10)

Finally, negative temperatures aren’t excluded: they correspond to n2

n1
> g2

g1
—the case of interstellar

masers, with κ < 0.

Now write the source function Σ: you find that n2, A21, and φν all cancel out so that

Σν = Bν(Tx) (11)

This simply reflects the fact that, by defining n2

n1
in terms of a temperature, we are in effect

assuming LTE; and in LTE the source function is always Σν = Bν(Tx). In particular, there are no

line parameters (Einstein A, shape function) in Σ!

3. THE RAYLEIGH-JEANS (RJ) LIMIT

With the equation of transfer above, we always encounter the lengthy expressions of the sort
[

2hν3

c2
(ehν/kT − 1)−1

]

, which makes equations cumbersome. However, if we restrict ourselves to

the RJ limit, the equations become much simpler. This is particularly so if we express the line

frequency, which iis a measure of the energy difference between states 2 and 1, as temperature T21:

hν

k
→ T21 (12a)

1

ehν/kT − 1
→

T

T21

(12b)

Bν(T ) →
2kν2T

c2
=

2kT

λ2
(12c)

With this simple way of writing things, we have for the absorption coefficient:
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∫

κνdν = n2

A21c
2

8πν2
T21

Tx
(13a)

or, in terms of the total number of atoms ntot,

∫

κνdν = ntot
A21c

2

8πν2
T21

Tx

g2
g1

1 + g2
g1

(13b)

Equation 13b is very important! It shows that κ ∝ 1

Tx
, so that cold clouds have higher optical

depths. This happens simply because the upper state gets less populated at colder temperatures,

reducing the ratio of stimulated emissions to absorptions.

For the source function and specific intensity, we have:

Σν =
2kTx

λ2
(14a)

Iν =
2kTB

λ2
(14b)

so we can write for equation 3, the fundamental equation of transfer,

dTB

−dτν
= Tx − TB (15)

4. THE LINE SHAPE FUNCTION φν

Let φν be the line shape function. It is the probability per unit frequency interval that the

photon is emitted;
∫

φνdν = 1. As φν gets narrower, the line-center opacity increases: φν,LC ≈ 1

δν ,

where δν is the line width. This means κν ∼ κLCδνφν , where κLC is the opacity at line center.

Lines are commonly represented by Gaussians; if thermal broadening alone determines line

shape, this is exact. Sometimes it is also important to include the Lorentzian “damping wings” or

pressure broadening; the combination of a Gaussian and a Lorentzian is a Voigt profile (see RL).

We, however, will stick with Gaussians. For a Gaussian,

φν =
1

√
πδν

e
−∆ν

2

δν2 (16a)

and

τν = τLCe
−∆ν

2

δν2 =
√
πτLCδνφν (16b)
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where τLC is the optical depth at line center, ∆ν is the frequency offset from line center and δν is

half the full 1

e width. Observers usually use the full width at half maximum δνFWHM , for which

δνFWHM = 2(ln 2)1/2δν = 1.665δν (17a)

∫

τdν =

√
π

2(ln 2)1/2
τLCδνFWHM = 1.065τLCδνFWHM (17b)

In terms of velocity V (km s−1; δV = λδν),

δVFWHM = 0.213

√

T

A
km s−1 (18a)

T = 21.8 δV 2

FWHMA (18b)

5. SOLUTION OF RADIATIVE TRANSFER FOR A SIMPLE CASE

Suppose we know Tx as a function of z, or equivalently τ ; then one can explicitly solve equation

15. In the nice case of a uniform slab in which Tx is constant, we have

TB = Tx(1− e−τν ) + TB,BKGNDe
−τν (19a)

which has the nice simple interpretation: the first term is the emission within the slab; the second

term is the emission incident from behind, attenuated by the opacity of the slab.

The line intensity is usually measured with respect to the surrounding continuum—let’s call

this the line deflection ∆TB. If TB,BKGND is frequency-independent continuum, denoted by TB,BC

(for Background Continuum), then the line deflection is

∆TB = TB − TB,BC = (Tx − TB,BC)(1− e−τν ) (19b)

Note that we have either an emission or absorption line, depending on the sign of (Tx−TB,BC). In

other words, clouds that are colder than the background produce absorption lines.



– 7 –

5.1. The 21-cm Line

To a good approximatioo, The 21-cm line has Tx = TK because the critical density ncrit is

small. Moreover, because of the low frequency (T21 = 0.068 K) the RJ approximation applies. We

have the interesting limits, first for the combination (τLC ≪ 1) and (TB,BC ≪ TK):

∫

∆TBdV →
N(HI)

1.83× 1018
(20)

which means that the integrated line intensity ∝ the HI column density and is independent of TK .

This, plus the fortunate circumstances that the 21-cm line is, in fact, usually fairly optically thin

and TB,BC is small, are of crucial importance for 21-cm line surveys: they provide the total HI

column density.

The other interesting limit is, of course, τLC ≫ 1:

TB,LC → TK (21)

so it’s equivalent to being inside a blackbody at temperature TK—as it must be. Note that TB,LC−
TB,BC = TK − TB,BC : the line can be in absorption or emission, but in both cases case TB,LC →
TK , independent of TB,BC—which, of course, makes sense because the background continuum is

completely absorbed.


