2D BRUTE-FORCE FITTING FOR LAB 3 BASELINE DETERMINATION February 28, 2017

This is a recap of the recommended 'brute-force' fitting procedure to find the baselines $B_{\text {ew }}$ and $B_{n s}$, which is equivalent to finding $Q_{e w}$ and $Q_{n s}$ (defined in the first few lines of section 8.4 in lab3 writeup).

1. Follow the first few lines of section 8.4 .3 to find the best value for $Q_{e w}$ assuming that $Q_{n s}=0$. That is, generate a series of 'guessed values' for $Q_{e w}$. For each one, least-squares fit for the unknown coefficients (A, B) in eqn 12 and derive the sum-of-squared residuals S^{2}. Plot S^{2} vs $Q_{e w}$; the leastsquares fit for $Q_{e w}$ is that value for which S^{2} is minimized.

Issues: Cover a large enough range of $Q_{e w}$ in your guesses so that you find the true minimum, not just a local minimum. Also, make the guessed values close together enough so that you define the minimum well.
2. Repeat the above for a 2-d grid of guessed values for $Q_{e w}$ and $Q_{n s}$ and find the global minimum for S^{2} in this 2 d space. Call this minimum value $S_{\text {min }}^{2}$.

The values for $Q_{e w}$ and $Q_{n s}$ at this global minimum are the best-fit values. Call these $Q_{e w}{ }^{*}$ and $Q_{n s} *$. Define $\Delta Q_{e w}=Q_{e w}-Q_{e w} *$ and $\Delta Q_{n s}=Q_{n s}-Q_{n s} *$.
3. Deriving the uncertainties in the best-fit values:
3.1. Convert your 2-d grid of S^{2} into a 2-d grid of ΔS^{2}, where $\Delta S^{2}=S^{2}-S_{\text {min }}^{2}$. Then the Taylor expansion about the best-fit values begins with the second-order terms because the first-order ones are zero at the minimum. So with the second derivatives evaluated at $S_{\min }^{2}$, we have

$$
\begin{equation*}
\Delta S^{2}=\frac{1}{2} \frac{\partial^{2} S^{2}}{\partial Q_{e w}^{2}} \Delta Q_{e w}^{2}+\frac{\partial^{2} S^{2}}{\partial Q_{e w} \partial Q_{n s}} \Delta Q_{e w} \Delta Q_{n s}+\frac{1}{2} \frac{\partial^{2} S^{2}}{\partial Q_{n s}^{2}} \Delta Q_{n s}^{2} \tag{1}
\end{equation*}
$$

It's much better to write this in matrix notation:

$$
\begin{equation*}
\Delta S^{2}=\boldsymbol{\Delta} \mathbf{Q}^{\mathbf{T}} \cdot[\alpha] \cdot \boldsymbol{\Delta} \mathbf{Q} \tag{2}
\end{equation*}
$$

where $\boldsymbol{\Delta} \mathbf{Q}$ is the column vector of guessed values minus the best-fit values, i.e.

$$
\Delta \mathbf{Q}=\left[\begin{array}{l}
\Delta Q_{e w} \tag{3}\\
\Delta Q_{n s}
\end{array}\right]
$$

and $[\alpha]$ is the curvature matrix (equation 2.4a in 'least-squares-lite'), which is 2 x 2 and symmetric so it has 3 independent parameters - 2 diagonal and 1 off-diagonal element:

$$
[\alpha]=\left[\begin{array}{cc}
\frac{1}{2} \frac{\partial^{2} S^{2}}{\partial Q_{e w}^{2}} & \frac{\partial^{2} S^{2}}{\partial Q_{e w} \partial Q_{n s}} \tag{4}\\
\frac{\partial^{2} S^{2}}{\partial Q_{e w} \partial Q_{n s}} & \frac{1}{2} \frac{\partial^{2} S^{2}}{\partial Q_{n s}^{2}}
\end{array}\right]
$$

3.2. Extract approximate values for the elements of $[\alpha]$ by hand. Use your native intelligence to do this in an easy way. Specifically, use your 2 d grid of ΔS^{2} versus $Q_{e w}$ and $Q_{n s}$ to numerically find the three second derivative matrix elements.
3.3. Having found $[\alpha]$, find the covariance matrix by taking its inverse.
3.4. Derive the uncertainties in $Q_{e w}$ and $Q_{n s}$ using this covariance matrix in equation 3.7 in 'lsfit-lite'.

