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The purpose of this lab is to experimentally investigate digital sampling, digital Fourier

transforms, and mixers. Mixers are the basis of heterodyne spectroscopy. Heterodyne spec-

troscopy, in turn, is what you use every day that you listen to a radio, use a cell phone,

watch TV—or do radio astronomy. In the second lab, we’ll use it to observe the 21-cm line

emission from our Galaxy.

In this lab, you will be performing several experiments, analyzing the data and gen-

erating a number of different data files. You will need to keep careful notes in your lab

notebook! Or, pay the penalty, and forget what you did, do things twice, and be com-

pletely disorganized. Your choice!

1. GOALS

• Learn how to sample electronic signals—here, one or more sine waves—digitally using

our computers.

• Get started with our programming language, IDL, using it for the mathematical anal-

ysis, signal processing, and making nice plots.
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• Become acquainted with aliasing and the basic law of sampling: the Nyquist criterion.

• Learn how to use Digital Fourier Transforms (or Discrete Fourier Transforms; DFT) to

determine the frequency power spectrum of a time series. Understand leakage power

and frequency resolution when sampling a single sine wave.

• Learn about the Fast Fourier Transform (FFT) as a fast implementation of the DFT.

• Learn how the FT treats noise, which is the important case for radio astronomy.

• Learn about correlation functions and, in particular, autocorrelation functions and

power spectra.

• Learn the basics of mixing for frequency conversion (that’s the heterodyne technique).

Explore how real mixers differ from the ideal.

• Learn how complex inputs to a FT break the negative/positive frequency degeneracy.

• Construct a sideband-separating (SSB) mixer and explore the mixing process.

• Learn enough Latex to write up your results in a formal lab report, including nice plots

and graphs.

2. SCHEDULE

There’s a lot to do in this lab! If you don’t understand the Nyquist criterion by the end

of the first week, you’re behind. Here’s how it should be:

1. The First Week. For class on 24 Jan: Finish §3, which requires reading the accompa-

nying material in §4. Be prepared to show your work, your software, and your results

to the class, making real-time plots in IDL during your presentation.

2. The Second Week. For class on 31 Jan: Finish §5 and the reading in §6. Again, be

prepared to strut your stuff to the class.

3. The Third Week. For class on 7 Feb: Read the handouts in §7, and then write and

hand in your formal report! Your report should contain relevant plots together with

commentary to illustrate your work, your thought processes, and your conclusions.

Generally speaking, your lab report should address, with discussion and/or plots, each

of the goals in §1.
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3. IN THE LAB: DIGITALLY SAMPLING A SINGLE SINE WAVE (First

Week)

3.1. Handouts and Software

As you begin real work this first week, you will need to become immersed in the Linux

operating system, the Emacs editor, and IDL. To this end, you’ll need to become familiar

with the following handouts and IDL procedures:

3.1.1. Handouts

1. Learning Linux: unixprimer.pdf “A SHORT UNIX PRIMER” Basic commands for

Linux/Unix operating systems. Eventually you’ll want to know all of the commands

in here because they are so useful.

2. Learning the EMACS editor: emacs-beg.pdf “A Beginners Guide to Emacs” and

the related emacskeyops.pdf “Common Editing Tasks and Their EMACS Keystroke

Counterparts”. Emacs is excellent for everything, including editing writing computer

code. Efficient editing means using the keyboard instead of the mouse; the second

handout gives keystroke commands for the most commonly needed editing sequences.

3. Getting into IDL: idltut1 ay121.pdf “Quick IDL Tutorial Number One for AY121”

Gives you the basics of IDL.

4. Plotting in IDL: bpidl.pdf “BPIDL—BASIC PLOTTING IN IDL: PLOTS, MUL-

TIPLE PLOTS, COLORS, MAKING POSTSCRIPT FILES” Sections 1 and 2 are

enough for now.

5. This handout is optional, because for this lab you can get along with just the material

below in §4. This handout is more detailed, 28 pages of all you need to know about

Discrete Fourier transforms. fourierc.pdf “DISCREETLY FINE TIMES with DIS-

CRETE FOURIER TRANSFORMS (DFTs with DFTs) or WHY DOES THAT FFT

OUTPUT LOOK SO sWEIRD??? ”.

3.1.2. IDL Procedures

The following IDL procedures are needed or useful for this lab:

1. getpico.pro — runs the A/D board to digitally sample signals. This is essential.
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3.2. Your First Digital Sampling: the Nyquist Criterion

We begin this course by exploring the all-important realms of the Nyquist criterion

and aliasing in digital sampling. Clearly, if you sample too slowly the signal won’t be well-

reproduced. But if you sample really fast, then you generate large data files that take a long

time to process. Just how slowly can you sample the signal without completely losing its

basic properties (such as, for example, the fact that it oscillates with frequency νsig)?

The fundamental parameter here is the ratio of sampling frequency νsmpl to signal fre-

quency νsig. With our equipment we can set νsmpl to only selected, quantized values. How-

ever, we can set νsig with almost arbitrarily high precision. So to explore these issues we will

pick a sampling frequency νsmpl and take data at several signal frequencies νsig. Be sure to

use a coax T so that you can look at the sampled signal on the oscilloscope. Set the peak-

to-peak voltage appropriately so that it doesn’t saturate the Analog-to-Digital Converter

(known as the ADC). Use getpico.pro to get your data.

We want to explore sampling rate issues, so to that end we will begin by. . .

1. Pick a convenient sampling frequency νsmpl.

2. Set the synthesizer to frequency νsig = (0.1, 0.2, 0.3, . . . , 0.9)νsmpl and take data.

The sampler always gives you 16000 samples. For this part of the lab, it’s easier to deal

with fewer, so just use the first N (in IDL, with the command firstN= samples[0:N-1]),

with N being a few hundred or thousand. Throughout the datataking, you should always be

monitoring the signal with the oscilloscope. These are sine waves, so it’s easy to measure the

period by looking at the oscilloscope; each time you digitally sample the signal, you should

write down the period (maybe in your lab notebook?).

For each dataset, use IDL to plot the digitally sampled waveform versus time. Make the

plots informative, meaning that you label the axes (in particular, label the x-axis in time

units) and you can clearly see the signal shape; if necessary, plot only a part of the data

so you can clearly see the signal shape (e.g., a few cycles of the sine wave). Plot both the

sampled points and the lines connecting the points; you can do this by setting psym in the

plot command (e.g., plot, times, timeseries, psym=-4). Compare your plot with the

oscilloscope trace.

Also, for all the datasets derive and plot the Fourier power spectrum (see §4.2 and

§4.3). Make sure that you label the axes with proper values of time and frequency—and

choose convenient units, such as microsec (µs) and MegaHz (MHz), to avoid huge and tiny

numbers. In deriving the Fourier spectra, use our homegrown DFT procedure (see §4.2).
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Now, look at both sets of these plots and note any funny business. Think about your

results and draw your own conclusion: just what is the minimum sampling rate that you can

get away with? (That’s Nyquist’s criterion).

3.3. Fourier Voltage and Power Spectra

Above we looked at the power spectrum and didn’t examine the voltage spectrum. Now

let’s look at the voltage spectrum. The voltage spectrum numbers are complex, with real

and imaginary parts. Plot the real and imaginary parts separately. It is most informative

to have them on the same panel, which you can do either by plotting the real part and then

overplotting the imaginary part in a different color; or you can use two plots one below the

other by setting !p.multi=[0,1,2] and plot, freqs, real part(vspct) and then plot,

freqs, imaginary(vspct). Take a detailed Look at the plotted points with the goal of

seeing if they exhibit any symmetry for negative and positive frequencies about 0. What do

you see?

To make sure that any conclusions you draw regarding the symmetry are not just a

fluke, repeat this process for several independent data streams. The mathematicians have

a name for the kind of symmetry exhibited in these voltage spectra. It’s called Hermitian

symmetry.

What does it mean that the voltage spectra are complex? What do the real and imag-

inary parts represent? Is the imaginary part any less ‘real’ than the real part? Is it just

a figment of your imagination? What does it mean that we talk of frequencies as being

negative and positive? Are negative frequencies any less real than positive ones?

When you compare the plots for several independent data streams, do the voltage spectra

repeat identically? Why not? What is happening when sometimes the real portions are

positive or negative? when the imaginary portions have more amplitude than the real ones?

For the power spectra, repeat this symmetry examination and the test for repeatability.

What kind of symmetry do the power spectral points exhibit? Apply to the power spectra

the questions we posed just above for the voltage spectra.

Choose one of the power spectra and take its cosine Fourier transform (i.e., force the

imaginary component of its Fourier transform to be zero by symmetrizing the power spec-

tum). Calculate the autocorrelation function (ACF) of its voltage time series. According to

the correlation theorem, the FT of the power spectrum should equal the ACF. Does it?
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3.4. Leakage Power

Above, you calculated a power spectrum for each input signal at N distinct frequencies

separated by ∆ν = νsmpl/N . In each, you found a spike corresponding to the input signal’s

frequency. Here, focus on just one of the properly-sampled signals νsig. Calculate the power

spectrum for many more than N output frequencies than recommended in §4.2, i.e. make

the frequency increment much smaller than ∆ν = νsmpl/N . Making the output frequencies

closer together gives a more nearly continuous frequency coverage in the plot of the output

spectrum. Turn up the vertical scale a lot to see if there is any nonzero power at frequencies

other than νsig. You do see such power! This is Spectral Leakage. It affects all power spectra

calculated using Fourier techniques.

Can you understand what’s going on from a mathematical viewpoint?

3.5. Frequency Resolution

If you had two sharp spectral lines, how closely spaced in frequency could they be and

still resolve them? Investigate this experimentally by combining two SRS outputs in a power

splitter, with the two SRS frequencies very close together, and plot the power spectrum.

For this, you’ll again want to plot points much more closely spaced in frequency than the

∆ν = νsmpl/N recommended in §4.2.

How close together can the two frequencies be for you to still be able distinguish them?

This is called the frequency resolution. How does it depend on the number of samples you

use in the DFT? In particular, how does it compare to the length of the time interval that

those samples cover?

Can you understand this from a mathematical viewpoint?

3.6. Nyquist Windows

Above, we calculated Fourier spectra for frequencies in the range ±νsmpl/2. What do

we get when we increase this range? Explore by taking a Nyquist-sampled time series and

calculating the Fourier spectrum for a much larger frequency range, ±Nνsmpl/2, where N is

at least 4, retaining the original frequency interval. Each value of N gives you a spectrum in

a different Nyquist window. How do the spectra in different Nyquist windows compare? Note

that, for N > 1, you are calculating power spectra for frequencies that violate the Nyquist

criterion. Nevertheless, the results aren’t gibberish. In fact, in Lab 4 of the course we use a
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digital spectrometer that samples the 12th Nyquist window.

This shows that the strictly correct statement of the Nyquist criterion is that the

bandwidth—i.e., the frequency range of the signal—must not exceed νsmpl. For the first

Nyquist window this is equivalent to the simpler statement of the Nyquist criterion that we

explored at first.

3.7. FTs of Noise

A blackbody radiator with temperature TB emits electromagnetic waves with power per

Hz given by the usual blackbody formula I = 2hν3/c2(ehν/kTB−1). We are radio astronomers,

which means we operate in the regime hν/kTB ≪ 1, so the blackbody formula goes to the

much simpler Rayleigh-Jeans (RJ) limit, I = 2kTB/λ
2. The noise power depends linearly on

TB, and for a number of good reasons radio astronomers choose to measure noise power in

units of temperature.

When we observe, the electric field of the blackbody radiation is converted to voltage

when it strikes the probe in the ‘feed’ of the telescope. The electric field and its corresponding

voltage have the same statistical properties: Gaussian randomness and zero mean. Because

of the randomness, it’s called ‘noise’. or more properly ‘Gaussian random noise’. In the lab

we have laboratory sources of noise. Explore the properties of digitally sampled noise:

1. Connect our noise generator to our ∼ 6-MHz wide bandpass filter (the Minicircuits

SBP-21.4 filter) and take a 16000-point time series with the picosampler. These samples

are voltages. What’s the mean voltage (sum the voltages, divide by the number in the

sum)? What’s the mean square voltage (sum the squares of the voltages, divide by the

number in the sum). What’s the root-mean-square (rms) voltage (it’s the square root

of the mean square voltage)?

2. Plot a histogram of the sampled voltages (see IDL’s histogram function—for doc-

umentation, type ?histogram in IDL; or use our convenient home-grown ‘wrapper’

histo wrap—for documentation, type doc, ’histo wrap’ in IDL). The histogram

should look Gaussian, with a dispersion equal to the rms voltage. Overplot this

theoretically-expected Gaussian—does it look like your data?

3. Take a total of 32 16000-point samples with the picosampler (let’s call these 32 ‘chunks’

and derive the power spectrum for each chunk using the direct FT method. Plot the

average of all 32 power spectra. What does this look like?
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4. Plot the power spectrum for a single chunk and compare to the above average. Do the

same for the average of N chunks, where N = (2, 4, 8, 16) What you are doing here is

looking at how integration time affects the signal-to-noise ratio (SNR): the ‘signal’ is

what you see with long integration times and the ‘noise’ is the ‘grass’. How does SNR

depend on N? (Hint: SNR is proportional to Nx; what is x?)

5. Calculate the ACF for a single chunk, using the entire set of 16000 samples for delays of

≤ 2000 samples. Also derive the power spectrum from this ACF and compare with the

direct FT-derived power spectrum for the same chunk. Are they identical? Compare

the width (full width half max, or FWHM) of the ACF (∆τFWHM) with the FWHM

of the power spectrum (∆FFWHM). How do ∆τFWHM and ∆FFWHM compare?

4. IN THE MIND: FOURIER TRANSFORMS, THE ANALYTIC AND

DISCRETE VERSIONS (First Week)

4.1. The Analytic Fourier Transform

The input to the Fourier transform is voltage versus time, say E(t); the output is voltage

versus frequency, say E(ν). The Fourier transform is the integral

E(ν) =
1

T

∫ T/2

−T/2

E(t)e2πjνtdt . (1)

The input voltage E(t) is real; it is multiplied by the complex exponential and integrated,

so the output E(ν) is complex. Of particular importance is that the Fourier Transform

is invertible: you can go from the time to the frequency domain, and from the frequency

domain you can get back to the time domain using the inverse transform

E(t) =
1

F

∫ F/2

−F/2

E(ν)e−2πjνtdν . (2)

Note: If you’re paying attention, you would wonder how the integration limits F and T are

defined above. In the proper analytic formulation, they are both infinity. We emphasize their

boundedness here because, in practice, i.e. when you do actual measurements or numerical

calculations, neither can be infinity!

4.2. The Discrete Fourier Transform (DFT)

Our voltage versus time is not continuous, but rather it is discrete samples. With the

digital transform, the integral becomes a sum. In this sum, you need to specify:
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1. The set of sample times. I strongly suggest:

(a) Using N samples, where N is even (and even better: a power of 2).

(b) Define the time range so that the center time is the zero point. With N even,

there is no center time, so make the times run from −N
2
/νsmpl to (N

2
− 1)/νsmpl.

2. The output is a function of frequency, so you have to specify the frequencies for which

you want the output E(ν). I strongly suggest that, at first, you calculate the the output

for N frequencies running from −
νsmpl

2
to +

νsmpl

2

(
1− 2

N

)
. This makes the frequency

increment equal to ∆ν = νsmpl/N over a total range of just under νsmpl. Thus, you

calculate a voltage spectrum running from −
νsmpl

2
to not quite

νsmpl

2
using our in-house

DFT procedure. To find out how to use DFT, use the doc library or doc function;

in IDL, type: doc, ’dft’.

4.3. Power Spectra and Discrete Fourier Transforms

We are often interested in the output power spectrum, say P (ν). Power is voltage

squared. For complex quantities, the squaring operation means we want the sum of

the squares of the real and imaginary parts. We obtain this by multiplying the voltage

by its complex conjugate,

P (ν) = E(ν)E(ν)∗ . (3)

In IDL, there are two ways to get this product. One is to use the conj function, i.e.

PF = EF * conj(EF). Should the imaginary part of PF be zero? (answer: yes! Why

is this?) Is it? (answer: no! Why not?) To get rid of this annoying and extraneous

imaginary part, you can use the float function: PF = float(PF).

The other (more convenient and suggested) way is to square the length of the complex

vector, i.e. PF = (abs(EF))^2. The result is automatically real.

4.4. The Power Spectrum and the Autocorrelation Function (ACF)

There is a very important theorem involving Fourier transforms of two functions. It is

called the convolution theorem. It has a cousin called the correlation theorem. Understanding

these, and being able to apply them, is one of the requirements for being a real radio

astronomer.

The convolution theorem: Consider two functions E(t) and F (t). They may be functions

of either frequency or time; here, we take them as functions of time. The convolution of these
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two functions is

[convol(E(t), F (t))](τ) = [E ∗ F ](τ) =
1

T

∫ +T/2

−T/2

E(t)F (τ − t) dt (4)

and the correlation of the two functions is

[corr(E,F )](τ) =
1

T

∫ +T/2

−T/2

E(t)F (τ + t) dt (5)

Conceptually, these two functions describe ‘sliding F over E by changing the parameter τ ’.

τ is called the ‘time delay’, or simply the ‘delay’. These two expressions are almost identical;

the only difference is the sign of t in the argument of F . If F is symmetric, which is the case

of interest for us, the two are identical. Denote the Fourier transform of E as

EFT (ν) = [FT (E(t))](ν) =
1

T

∫ T/2

−T/2

E(t)e2πjνtdt . (6)

and similarly for F (t). Then the convolution theorem states:

[FT (convol(E(t), F (t))](ν) = [FT (E(t))](ν)× [FT (F (t))](ν) (7)

and the correlation theorem:

FT ([corr(E(t), F (t))](ν) = [FT (E(t))](ν)× [FT (F (t))]∗(ν) (8)

where the asterisk means ‘complex conjugate’. These theorems apply strictly only in the

limit T → ∞ (because of ‘end effects’ when T is finite), but for finite T—the case for any

real measurement—their equality is ‘good enough’. In words: The FT of the convolution in

the time domain is equal to the product of the Fourier transforms in the frequency domain.

Ditto for the correlation theorem, except that one of the FTs is complex-conjugated. If

F (t) is symmetric, then the imaginary part of its Fourier transform is zero, which means

F FT,∗(ν) = F FT (ν), and two theorems become identical.

A hugely important application of this theorem is the case when E(t) = F (t), in

which the correlation function becomes the Autocorrelation function ACF (τ), and equa-

tion 8 states, in words:

The power spectrum is equal to the Fourier transform of the ACF

We’ll talk about other examples and applications in class.

When calculating a digital version of the correlation function, you have to worry about

‘end effects’. Suppose you are calculating an ACF for N samples with delays ∆N ranging up
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to N/2. Then the number of terms in the sum is always smaller than N because the delays

‘spill over the edge’ of the available samples. So when you calculate the ACF you need to

properly normalize:

ACF (∆N) =
ΣN−∆N−1

k=0
xkxk+∆N

ΣN−∆N−1

k=0
x2
k

(9)

4.5. The Fast Fourier Transform (FFT)

Above in §4.2, you had N time samples and evaluated the DFT for N well-chosen

frequencies. These were “well-chosen” because for these particular values of frequency—and

only these particular values—you can get back to the time domain by using the inverse

transform (in IDL using dft, you accomplish this by setting the inverse keyword).

It so happens that, for these particular combinations of frequency and time, there is

a very fast algorithmic implementation called the Fast Fourier Transform, the FFT. What

do we mean by “Fast”? Normally when you do a DFT, you have N input numbers and N

output numbers and the number of calculations ∝ N2. When N gets large, this takes a long

time! For the FFT, on the contrary, the number of calculations ∝ N ln2(N), and this makes

it possible to do large-N transforms.

Try IDL’s FFT and compare it to your DFT calculation above. The FFT output is

ordered in what you might think is a funny and awkward way: when Fourier transforming

a time series to obtain N frequencies, the frequency array is ordered with N
2
− 1 positive

frequencies first, then N
2

negative frequencies However, it’s really not awkward for most

applications. See our “DFT’s with DFT’s” handout for details.

From now on, use FFT instead of DFT—unless you need results for additional output

points, either more closely-spaced or over a broader range.

5. IN THE LAB: MIXERS (Second Week)

5.1. The Double-sideband Mixer (DSB Mixer)

Figure 1 shows a block diagram of a DSB mixer, whose backbone is the device called a

mixer, which multiplies the two input signals. It’s simple: the r.f. signal goes into one mixer

port, the l.o. goes into the second mixer port, and the i.f. output is the third port.
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RF

IF

Mixer

L.O.

Fig. 1.— A DSB mixer. In the text, we sometimes refer to the r.f. input as the ‘signal’.

For the mixer use a Mini-Circuits ZAD-1, which has three BNC connectors (three ports)

and works well at these frequencies. The ZAD-1, like nearly all mixers, has its ports labeled

“R” (the “RF” or “signal”); “L” (the “local oscillator”); and “X” (the “mixing product”)

or “I” (the “intermediate frequency”). The ZAD-1 is a balanced mixer, so the “R” and

“L“ ports are identical, and in particular will not couple to DC or very low frequencies. In

contrast, the “I” port is coupled differently and will handle voltages all the way down to, and

including, DC. The mixing process functions no matter which two ports are used as inputs.

For example, if you are using a mixer to modulate a high frequency (say, a few MHz) with a

low frequency (say, a few kHz), you should use the “I” port for the low frequency and either

of the other two for the high frequency; take the output from the third port.

For this, use two SRS synthesizer oscillators as inputs to a mixer to explore the spectra

and waveforms in the DSB mixing process. The SRS synthesizers work up to 30 MHz.

Assign one of the SRS synthesizers to be your “local oscillator” (lo) with frequency νlo, and

the other your “signal” with frequencies νsig = νlo ± δν. Here, you choose the frequency

difference δν and you set the two synthesizers, one to the lo frequency and the other to

the signal frequency. There are two cases for the signal frequency, νsig = νlo + δν and

νsig = νlo − δν. Make δν somewhat small compared to νlo, maybe 5% of νlo. For the input

power level, a good choice is 0 dbm1 for both synthesizers. The output consists of both the

1What does this “dbm” mean? It’s the power relative to 1 milliwatt, expressed in decibels (dB). For our

system the cable impedance is 50 ohms; what’s the rms voltage for a signal with power level 0 dbm?
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sum and difference frequencies, so choose the ports appropriately.

We will want to digitally sample the mixer output and explore both the sum and dif-

ference frequencies. As you learned above, there are extremely important issues regarding

sampling rate. The most basic is the Nyquist criterion. Here, we also want enough samples

per period to give you a reasonable visual facsimile of the sine wave when you plot it; from

this standpoint, it’s nicer to sample at twice Nyquist, or even faster. Another issue is the

number of points you sample, which must be large enough to give you at least a few periods

of the slowest sine wave.

For the two cases νsig = νlo ± δν, plot the power spectra versus frequency. Explain why

the plots look the way they do. In your explanation include the terms “upper sideband” and

“lower sideband”.

For one of the cases, plot the waveform. Does it look like the oscilloscope trace? Also,

take the Fourier transform (not the power spectrum) of the waveform and remove the sum

frequency component by zeroing both the real and imaginary portions (this is ‘Fourier fil-

tering’). Recreate the signal from the filtered transform by taking the inverse transform and

plot the filtered signal versus time. Explain what you see.

5.2. Real Mixers: Intermodulation Products

Look at one of the above power spectrum plots with the gain turned up so you can see

weak signals. What do you see? A forest of lines! What are these?

We describe a mixer as an ideal device that multiplies the two input signals. However,

real mixers are not ideal. They function by using nonlinear diodes to perform an approximate

multiplication. A real mixer also produces harmonics of the mixed input signals. And it

produces the product of harmonics of each input signal times the other, vice-versa, and even

harmonics of each input signal with itself—in essence, whatever signal is present inside the

mixer will be combined with every other signal. These undesired products produce nonideal

signals, which are intermodulation products; engineers fondly call them ‘intermods’ or, more

colloquially, ‘birdies’. When a well-designed mixer is operated with the proper input signal

levels, the intermods have much less power than the main product, but they can nevertheless

ruin sensitive measurements.

Look at your forest of lines and see if you can identify how some of the stronger ones

come about.
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5.3. The Sideband-Separating Mixer (SSB Mixer)

Figure 2 shows a block diagram of a SSB mixer. It’s only a little more complicated than

the DSB mixer: it consists of two identical DSB mixers, one on the left and one on the right,

fed by the same l.o. Note the important part: the right-hand l.o. is delayed by 90◦ relative to

the left-hand one, which means that the mixing product on the right is delayed by 90◦ with

respect to the left. This means we can regard the right-hand output as the real part and

the left as the imaginary part of a complex vector. We sample both outputs simultaneously

and use them as the complex input to the Fourier transform; the resulting power spectrum

shows both negative and positive frequencies. Engineers and geeks call this ‘IQ sampling’.

RF

Re(IF) Im(IF)

L.O.

90o

Fig. 2.— An SSB mixer. The important part is the 90◦ phase delay in the right-hand l.o. This is normally

achieved with device called a ‘quadrature hybrid’. We will achieve it with a λ/4 piece of cable.

From the block diagram in Figure 2, construct an SSB mixer that achieves the phase

delay with a cable2. We will use it to experiment with no phase delay (a short cable) and a

90-degree phase delay (a long cable). For experimentation with this two-output mixer, use

the two SRS synthesizer oscillators as inputs, as before.

2Somewhere around the lab we have labelled a cable as being λ/4 at 21 MHz.
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5.3.1. As a DSB Mixer

First see what happens when the phase delay cable is short (ideally zero), so that the

two halves are essentially identical and have only a small relative phase delay. Pick a value

for |δf | and take time series data for the two corresponding values of fsig (these are the upper

and lower sidebands). Calculate the power spectra. When taking the Fourier transform, be

sure to make the inputs complex—you have two simultaneous samples, one real and one

imaginary. Looking at the power spectra alone, can you distinguish between positive and

negative δf?

5.3.2. The SSB Mixer

Now see what happens when the phase delay cable introduces a relative phase delay of

90◦ between the l.o. signals going to the two mixers. Repeat what you did above in §5.3.1.

Looking at the power spectra alone, can you distinguish between positive and negative δf?

If you have the time and inclination, verify that the phase difference between the two

mixer outputs behaves as shown in Figure 4. Why does it behave this way?

6. IN THE MIND: ON MIXERS AND THE HETERODYNE PROCESS

6.1. Some Commentary: The Heterodyne Process

Mixers are important because they allow us to shift the frequency of the whole input

spectrum by a uniform amount. They do this by multiplying the input signal by the “local

oscillator” (l.o.) with frequency νlo; this shifts the frequencies by νlo. In radio reception,

this is very important because nearly always our detectors work best in a fixed frequency

range, but our signals come in at many different frequencies. For example, for an AM station

playing rock music, the ultimate detector is our ear, which works only at audio frequencies;

however, the AM stations transmit at much higher frequency, nearly 1 MHz. A mixer is

used to shift the frequencies of the AM station down to the audio region. Such receivers

are called heterodyne receivers, and this principle is used universally not only in consumer

radios, TV’s, and cellphones but also in many other applications including radio astronomy.
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6.2. Some Theory: The Double Sideband (DSB) Mixer

We now turn to the basic theory of the ordinary DSB mixer, which is very straightfor-

ward. An ideal mixer multiplies the two input signals together; this multiplication makes

the output signal have the sum and difference frequencies. Usually, one of these is eliminated

by using a filter.

Suppose for simplicity that the mixer is ideal and that the two input signals are the

following: (1) the “local oscillator” with voltage equal to unity (for convenience) and fre-

quency ω0; and (2) two “signals” with voltage Es and frequencies ωs− = (ω0 − |δω|) and

ωs+ = (ω0+|δω|). We handle the two signal case simultaneously by writing ωs± = (ω0±|δω|).3

The mixer outputs in the two cases are MO− and MO+; similarly, we write MO±.

MO± is the product of the signal and l.o. signals, and can be expressed in terms of the sum

and difference frequencies by the usual trig identity

MO±,LHS = Es cos[ωs±t] cos[ω0t]
︸ ︷︷ ︸

product

=
Es

2
(cos[(ωs± − ω0)t]
︸ ︷︷ ︸

diff

+cos[(ωs± + ω0)t])
︸ ︷︷ ︸

sum

(10a)

Here we include the additional subscript ‘LHS’, which refers to the left-hand half of the SSB

mixer in Figure 2. Replacing ωs± by ω0 ± |δω|, we get

MO±,LHS = Es cos[(ω0 ± |δω|)t]× cos[ω0t]
︸ ︷︷ ︸

product

=
Es

2
(cos[±|δω|t]
︸ ︷︷ ︸

diff

+cos[(2ω0 ± |δω|)t]
︸ ︷︷ ︸

sum

) . (10b)

Thus, the signal frequency has been shifted to two frequencies by an amount equal to the

l.o. frequency: downward in the first term (to δω, the difference frequency) and upward in

the second term (to 2ω0 ± |δω|, the sum frequency). The output contains both the difference

and the sum frequency terms.

Now we insert a low pass filter to eliminate the sum term. We do this because we are

observing at some very high frequency, say the 21-cm line at 1.4 GHz, and need to convert to

much lower frequencies where our backend equipment works. (In the TV case it’s the same:

the signals are at hundreds of MHz and the picture processing circuitry operates below 10

MHz). This low-pass filter removes the second sum-frequency term, which leaves us with

MO±,LHS =
Es

2
cos[±|δω|t] =

Es

2
cos[|δω|t] . (11)

3In real life, e.g. a radio station, the “signal” is speech or music with a broad range of δf . In astronomical

life, e.g. the 21-cm line, the “signal” is a Doppler broadened line, which again has a broad range of δf . The

system is linear, so signals add without mutual interaction, so the discussion for a single δf also applies to

these broad spectra.
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Three things are important here:

1. The two sidebands—the two different input frequencies ([ωs− = ω0 − δω] and [ωs+ =

ω0 + δω])— produce the same symmetric-around-zero pair of IF output frequencies

±|δω|. The DSB mixer cannot distinguish between the two input frequencies.

2. Consider how |δω| depends on ω0: for the upper sideband, d|δω|
dω0

= −1, while for the

lower d |δω|
dω0

= +1. We hope that the upper three panels of Figure 3 elucidate the

situation.

3. A value of Es for one sideband produces a certain mixer output power; the same value

of Es for the other sideband produces the same power. With regard to power, the

sidebands are indistinguishable.

Figure 3 illustrates these results. The top panel shows the original RF spectrum, which

consists of signals above the LO (the USB signal) and below (the LSB). Suppose you use a

bandpass filter to eliminate the LSB. Then you have only the USB, and the second panel

shows the IF spectrum after DSB mixing: the USB appears at both negative and positive fre-

quencies and the spectrum is symmetric, meaning that the negative frequencies give exactly

the same result as the positive ones.

Now use a bandpass filter to eliminate the USB, leaving only the LSB; the third panel

shows the resulting IF spectrum.

If you didn’t use any bandpass filters, then both the LSB and the USB would appear in

the IF spectrum, as in the fourth panel. Looks complicated! With a DSB mixer, you can’t

distinguish between LSB and USB. The LSB and USB are inextricably mixed and you get

the sum of the power spectra. The only way can achieve the rejection of either the LSB or

the USB is by using an appropriate bandpass filter on the input RF spectrum.

But, nirvana! The bottom panel shows that SSB (Sideband Separating, or Single Side-

band) mixing retains the sideband separation and identity.

6.3. More Theory: The SSB Mixer

The SSB mixer has the capability of distinguishing whether the difference frequency |δf |

is positive or negative—that is, it distinguishes between the two sidebands. The sidebands

can, and usually do, contain completely independent signals; a common example in everyday

life is stereo FM.



– 19 –

RF Spectrum

−2000 −1000 0 1000 2000
Freq

0.0

0.5

1.0

1.5

2.0
LO

LSB

USB

DSB mixer output for ONLY the USB

−2000 −1000 0 1000 2000
Freq

0.0

0.5

1.0

1.5

2.0

USB USB

DSB mixer output for ONLY the LSB

−2000 −1000 0 1000 2000
Freq

0.0

0.5

1.0

1.5

2.0

LSB LSB

DSB mixer output for BOTH LSB and USB

−2000 −1000 0 1000 2000
Freq

0.0

0.5

1.0

1.5

2.0 LSB+USB
LSB+USB

SSB mixer output

−2000 −1000 0 1000 2000
Freq

0.0

0.5

1.0

1.5

2.0

LSB

USB

Fig. 3.— Upper and lower sidebands in DSB and SSB mixers for a set of δ-function test

signals on top of broad level noise spectra. Top: the RF spectrum. The next two show

the USB and LSB individually when they undergo the DSB mixing process; panel 4 shows

how they both add together. The bottom panel shows the SSB mixer, which keeps them

separate.
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Figure 2 shows a block diagram of the SSB mixer. The RF input and the LO are each

split by a power splitter so that we have two identical mixers, one on the left and one on

the right, whose outputs are labelled Re(IF) and Im(IF), respectively. The one on the

left is identical to the DSB mixer in figure 1. The one on the right differs in only one way,

which is crucial: its LO is delayed by 90◦ relative to that on the left. With this, the Im(IF)

output lags the Re(IF) one by 90◦ in phase. This allows us to remove the degeneracy in the

sidebands by using both inputs to the Fourier transform, regarding the FT input as complex.

To understand how this works, let’s repeat exactly the same math in equations 10 and

11, with the addition of a 90◦ phase delay to the l.o. signal. In equation 10, we represented

the LHS l.o. by a cosine and used the trig identity ‘cos times cos = cos + cos’. With the 90◦

phase delay, the RHS l.o. cosine becomes a sine, and the corresponding trig identity becomes

‘sin times cos = sin + sin’. The RHS equivalent of equation 11 becomes

MO±,RHS =
Es

2
sin[±|δω|t] = ±

Es

2
sin[|δω|t] , (12)

which is identical except that the cosines are sines.

Suppose that the RF input signal a cosine wave in the lower sideband, with frequency

below the l.o. frequency, i.e. δω is negative. Then the LHS and RHS outputs are sinusoidal,

with the two mixer outputs ∝ cos[|δω|t] and − sin[|δω|t] for the LHS and RHS, respectively.

These are shown in right panel of Figure 4, with the LHS side [MO−,LHS] dashed and the

RHS side [MO−,RHS] solid. The two signals are shifted in phase: for the RF input being in

the lower sideband, the dashed curve MO−,LHS leads the solid one MO−,RHS. When FT’d,

this corresponds to a negative IF frequency.

If the RF input signal is a cosine wave in the upper sideband, with frequency above the

l.o. frequency, δω is positive and the situation is reversed: the dashed curve MO+,LHS lags

the solid one MO+,RHS. When FT’d, this corresponds to a positive IF frequency.

7. ON PAPER: YOUR LAB REPORT (Third Week)

7.1. Handouts

1. What should your lab report look like? labreport comments.pdf “SUGGESTIONS

FOR LAB REPORTS”

2. You must use Latex for your lab report! sample.pdf “LaTex Is Your Friend OR

ENEMY?????????” Answer to this question is a resounding YES for ‘Friend’—if you

have followed his handout. Use LaTex for preparing your lab report!
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MIXER OUTPUTS FOR USB
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Fig. 4.— Outputs of the first mixers for the two sideband cases. Dashed curve shows the left-

hand mixer, solid is the right-hand mixer. Left panel shows δω > 0 (upper sideband—USB);

right panel shows δω < 0 (lower sideband—LSB).

3. Now’s the time for another look at efficient use of the EMACS editor, because if

you learn the keystoke commands you’ll be much quicker and save lots of time fur-

ther down the road: emacs-beg.pdf “A Beginners Guide to Emacs” and the related

emacskeyops.pdf “Common Editing Tasks and Their EMACS Keystroke Counter-

parts”. Emacs is excellent for everything, including editing computer code. Efficient

editing means using the keyboard instead of the mouse; the second handout gives

keystroke commands for the most commonly needed editing sequences.

4. You’ll need to show plots into your lab report. To do this you make PostScript files of

your plots. See bpidl.pdf “BPIDL—BASIC PLOTTING IN IDL: PLOTS, MULTI-

PLE PLOTS, COLORS, MAKING POSTSCRIPT FILES” Section 6.0.1.


