
1d IMAGE EXPLORATION AND PROCESSING USING tv AND ITS ILK

April 19, 2016

Carl Heiles

Contents

1 PIXELS, COLORS, BYTES 2

2 DECOMPOSED COLOR (i.e., TrueColor) vs. COMBINED COLOR (i.e., Pseu-

doColor) 2

2.1 Combined Color: 256-Element Colortables . 3

2.2 Decomposed Color . 3

2.3 What Have I Done? . 4

3 COMBINED COLOR—256-ENTRY (8-BIT) COLOR TABLES 4

3.1 Linear Mapping, both Direct and Reversed . 5

3.2 Nonlinear Mapping . 5

3.3 Why We Need Nonlinear Mapping . 6

4 DISPLAYING AN IMAGE IN IDL 6

4.1 An Example: Read the Image from a FITS File . 6

4.2 Displaying and Examining the Image with IDL’s Native Procedures Like tv 7

4.2.1 Image Size and Window Size . 7

4.2.2 Displaying the Image with tv . 8

5 EXPLORING THE IMAGE WITH trc AND profiles 8

6 MANIPULATING THE IMAGE BY MANUALLY CHANGING THE COL-

ORTABLE 10

7 EXPLORE AND HAVE SOME FUN WITH THIS IMAGE! 10

– 2 –

This handout is oriented towards image exploration and manipulation—i.e., image processing—

rather than making nice displays for presentation..

1. PIXELS, COLORS, BYTES

Your display screen consists of about a million little areas called pixels. Each pixel can show

a different color/intensity combination. Everything on your screen—text, pictures, whatever—

is displayed by filling the appropriate pixels with the appropriate color/intensity. Your screen

dimensions might be 1280× 1024 (5× 4 aspect ratio)—found on many computers of all kinds; the

somewhat larger 1440 × 900 (8 × 5 aspect ratio); 1024 × 768 (4 × 3 aspect ratio)—found on older

computers and small laptops. These aspect ratios come in much larger dimensions. Each pixel is

small! But if you look carefully, you can see them.

Typical CCD projectors (as used for PowerPoint) have the 4× 3 format with 1024× 768 pixels

as their native resolution, so you get best results, with no image cropping, when you set your video

card’s resolution to this value.

2. DECOMPOSED COLOR (i.e., TrueColor) vs. COMBINED COLOR (i.e.,

PseudoColor)

All colors seen by the human eye can be produced by a suitable mixture of intensities of only

three colors: red, green, and blue (RGB). Most common displays in use today allow 256 intensities

of each color1. This gives a total of 2563 combinations—this used to be billed in the PC world as

“millions of colors”. This is called TrueColor.

Believe it or not, it is often desirable to degrade the full “millions of colors” true scheme to

a 256-color scheme; this is called PseudoColor. In PseudoColor, you are combining the separate

RGB colors into a single 256-element set; that’s why it’s called Combined color. The particular set

of 256 colors chosen is called the colortable; each of the 256 colors is a particular combination of

RGB.

The most common colortable is the grayscale one. In this, the intensities of RGB are all

identical. They change uniformly from zero intensity (for entry number 0—this makes black) to

full intensity (for entry number 255—this makes white). In between, we have all shades of gray. An

image made with the grayscale colortable looks like a black-and-white photograph. If you choose a

non-gray colortable, then you have PseudoColor, which is often called “false color”, which can be

helpful in highlighting certain features or achieving more contrast. We give an example below, and

other examples in our “1d2d3d: One, Two, and Three Dimensional Color Images” memo.

1Note that 256 is the same as 28: it’s 8 bits—or, alternatively, 1 byte.

– 3 –

2.1. Combined Color: 256-Element Colortables

In your computer’s memory, an image consists of a two-dimensional array of data values d, one

for each pixel. These are actual numbers. Their range is restricted: d can take on 256 different

values, ranging from 0 to 255. On your screen, the image consists of projected light in each pixel,

which we call the intensity I.

There is a one-to-one relationship between d and I, so there are also 256 different possible

values for I. Generally speaking, this relationship is specified by the “color table”. The color table

is often nonlinear so as to emphasize weak or strong features. Sometimes it’s an equal mixture

of red, green, and blue (grayscale); sometimes the mixture is engineered to produce color. By

“Intensity” (I), we mean the 256 different possible combinations of light intensity and color, one

for each value of d.

To use combined color in IDL, you must turn the native 2563 RGB colors into a 256-element

colortable, which you accomplish by turning color decomposition off and then defining a colortable.

You do the former with the command

device, decomposed=0

By default, IDL sets the three colors r,b,b equal, which gives you grayscale. If you want the

system colors (like !red) defined and you’re using our IDL library, the uppermost 12 entries of the

grayscale colortable define the colors2, and you load that colortable with the command

setcolors, /system_variables (or setcolors, /sys)

Alternatively, you could define a modified grayscale (e.g., as in equation 3) or a false-color colortable

that is not gray3.

2.2. Decomposed Color

For ordinary non-image work you almost always want Decomposed Color so you can make any

color you want on the graphics output; you don’t want to be restricted to 256 colors. In TrueColor,

you have 256 different possibilities for each of the three colors RGB, so you have 2563 color possi-

bilities. It’s definitely not a 256-element colortable! In IDL, you can turn color decomposition on

with (guess what!)

device, decomposed=1.

If you want the system colors (like !red) defined and you’re using our IDL library, also type the

2e.g., number 244 is !black, 245 is !red, etc.; use IDL’s tvlct comomand with the get keyword set to see these

definitions.

3IDL has a wide selection of such colortables; in IDL, to view them type xloadct and to load one use loadct.

– 4 –

command setcolors, /system_variables (or setcolors, /sys)

2.3. What Have I Done?

You can oscillate between decomposed and combined color at will, to your heart’s content. In

fact, you sometimes need to do this when making color images in PostScript files, because images

in PostScript need decomposed color, while vector graphics (like symbols or lines) need combined

color. To see what you’ve told IDL, enter

help, /device

If you are in TrueColor with decomposed color turned off (i.e., a 256-element colortable) it will say

“Graphics pixels: Combined”; if it isn’t turned off it says “Graphics pixels: Decomposed”. It also

shows the sizes of all graphics windows and tells you which visual class you’re running (TrueColor

or DirectColor). If you are in PostScript mode, in which it writes all output to a PostScript file

instead of the screen, it will tell you so.

3. COMBINED COLOR—256-ENTRY (8-BIT) COLOR TABLES

The remainder of this tutorial assumes you have turned color decomposition off, i.e. you are

using combined color4. In this PseudoColor mode, the maximum number of color/intensity combi-

nations that can be displayed simultaneously is 256. Therefore, images are represented by numbers

that range 0 → 255. For this reason, displayed images are always represented by byte arrays. You

can display other array data types, but IDL will convert whatever you give it to a byte array before

displaying it. Therefore, if you display, say, an integer array (integers are two bytes long and range

from −32768 → 32767), and if numerical values in this array exceed 255, then the resulting image

display will look weird. That’s because, in converting from integer to byte, numbers that exceed

255 will “wrap around”. For example, integer 255 equals byte 255, but integer 256 equals byte 0,

integer 257 equals byte 1, etc. Below, we’ll deal with these conversions in more detail.

For now, let’s restrict our attention to black/white images—otherwise known as “grayscale”

images. Gray, or white, is composed of an equal mixture of red, green, and blue, and all we deal

with is the intensity I. In a grayscale image, the intensity of each pixel is related to the data value

d in that pixel. Let’s think of large intensity being white and small intensity being black; there are

256 different possible intensities, so I can range from 0 → 255. Similarly, the data values d can

range from 0 → 255.

An important concept is the relationship between I and d. This is known as the color table.

4You do this with device, decomposed=0 and, if desired, setcolors,/sys.

– 5 –

It specifies the mapping between data value and color/intensity—or, for a grayscale image, the

mapping between data value and intensity.

3.1. Linear Mapping, both Direct and Reversed

The simplest mapping between data value d and intensity I is a linear one with

I = d (1)

In this case, a data value d = 255 gives white and d = 0 gives black. This direct mapping is the

default manner in which images are displayed on the computer screen: there is a black background

on which the image is painted with increasing data values being increasingly white. However, on a

piece of paper the relationship is usually reversed, because paper is white and provides a naturally

white background. Thus, in this reversed mapping, we want to paint the image with increasing

data values being increasingly black. This is also a linear mapping, but reversed:

I = 255− d (2)

NOTE: Printed images usually look much better with the reversed mapping, because printers have

a hard time giving a uniformly black area with no streaks. This is the first reason why printed

images should be made with a reversed mapping. The second reason is that in scientific journals,

images with the reversed mapping are reproduced much better. The third reason is that making

the paper black uses lots of printer toner, which is expensive. To reverse the color table, you can

use equation 2. Alternatively, for a byte array called img, you can type tv, not(img) instead of

tv, img.

3.2. Nonlinear Mapping

The linear mapping is often not very useful because you usually want to highlight weak features

or bright features; we’ll see an example below. The most commonly used nonlinear mapping uses a

power law (this is the photographer’s “characteristic curve”) together with a “stretch”, which cuts

off the image at dim and bright intensity levels:

I = 255

(

d− dbot

dtop − dbot

)γ

, d = dbot → dtop (3a)

I = 0, d ≤ dbot (3b)

– 6 –

I = 255, d ≥ dtop (3c)

In a reversed mapping, you’d substitute (255− d) for d in the above equations.

There is one other commonly used nonlinear mapping, the so-called “histogram equalization”

technique. In this technique, the mapping is modified on an image-by-image basis so that, all of

the 255 colors are used in an equal number of pixels. Read about it in IDL’s documentation on

hist equal.

3.3. Why We Need Nonlinear Mapping

Never forget that the idea is to turn the data array into an image that conveys information to

the brain. The idea is not to be so strictly quantitative that details of interest are obscured.

You want to bring out details of interest. For example, for many images of the interstellar gas

you want to emphasize weak structures at the expense of the fidelity gained by a strict proportion-

ality between image brightness and data value. To this end, choose a color table and experiment

with the image transfer function. At minimum, this involves changing the span of the data values

represented in the image and raising the data values within that span to a power: a power less

than unity to emphasize weak features, larger than unity for strong ones.

4. DISPLAYING AN IMAGE IN IDL

We are still assuming that you have turned color decomposition off, i.e. you are using a 256-

entry color table. To accomplish this feat, see §2.

There are two ways to put the image on your computer screen (in computerese: “write the

image onto your X window”). One is simpler and uses Tim Robishaw’s (TR’s) display procedure;

it is best for producing publication-quality images as described in our handout tr display.pdf.

Here we describe the other, which uses IDL’s native procedures; it’s a bit more cumbersome but is

more useful when you are manipulating images, e.g. when you absolute knowledge of which pixel

is which.

4.1. An Example: Read the Image from a FITS File

First, generate an image. For this example there’s a nice image of the X-ray sky rass c.fits,

obtained by the ROSAT satellite on the web at:

http://astro.berkeley.edu/∼heiles/handouts/handouts images.html

– 7 –

or

http://ugastro.berkeley.edu/radio/2016/index.html

Copy this file to the disk area where you are running IDL. This file is in a format called “fits” format

(“flexible image transport system”), which is the same format of many astronomical images.

To read the data file into an array called image, it is easiest to use the IDL procedure called

“mrdfits”, which resides in the Goddard IDL library which, in turn, is already in your IDL path.

If you are logged into ugastro, all you have to do is type

image = mrdfits(’/home/global/ay121/handouts/images/rass c.fits’, 0, hdr)

This returns two arrays: the image array (image) and information about the image (headerinfo);

type print, headerinfo to see the header information. Now type help, image and IDL will tell

you that it is a 480× 240 FLOAT array.

4.2. Displaying and Examining the Image with IDL’s Native Procedures Like tv

Now we’re ready to write the image to the X window. If all you want to do is look at it, the

easy thing to do is use display, image. But when you want to examine the contents of individual

pixels on the image, i.e., when you want to do image processing, you want each image pixel to

occupy a single pixel on your screen.

4.2.1. Image Size and Window Size

This image is 480 × 240. Each element will occupy a single pixel on the screen, so we need

a window of at least that size to display the whole image. We can use a bigger window, in which

case the image won’t fill the window area. If we use a smaller window, only part of the image will

be displayed. We can create a window of the appropriate size, that is with numbers of pixels equal

to the same dimensions of the data array, by typing

window, xsize=480, ysize=240

and then displaying it with tv.

Maybe you’d like a bigger image in a bigger window so you can see things more clearly. Or

maybe the image is too large for your screen and you need to make it smaller so it fits. In either

case, you need to change the size of the image as measured in pixels. IDL does this easily with the

rebin function. Suppose you want to increase the size by a factor of 2 in the horizontal and 3 in

the vertical direction5, i.e. to make an array of size 960× 720. Do this by

5Using different factors for horizontal and vertical changes the aspect ratio, which is usually a bad idea; we do it

here simply for illustration.

– 8 –

bigimage = rebin(image, 960, 720)

Then create an appropriately-sized window (e.g. with window, 5, xsize=960, ysize=720); this

creates a new window, numbered 5, and leaves the old ones in place.

You can also resize the image using congrid, which works for non-integral factors. You might

say, “Well, I’ll always use congrid—it’s more flexible”. But be careful! congrid and rebin handle

enlargement and ensmallment differently, and treat the edges differently. With congrid, you almost

certainly don’t want to use the default options; look carefully at the keywords and try them out on

a short 1-d array to see their effects. Usually, rebin is better; don’t use congrid unless you know

what you’re doing.

4.2.2. Displaying the Image with tv

Display the image by typing

tv, image

and you see a gray mishmash oval. The oval is the Aitoff projection of the entire sky in soft X-

rays. The mishmash occurs because the data values in image exceed the allowable 0 → 255 range

of a byte array, so there’s lots of wrapping. You can use the max and min functions (or, nicer,

Goddard’s minmax function) to determine that the data values range from about −174 → 45337,

thus far exceeding the valid range for a byte array.

You can scale the data so that they all fit in the allowable byte range 0 → 255. We’ll first

produce a byte array, which we’ll call byteimage, from image. . .

byteimage = bytscl(image)

This linearly scales image, which ranges −174 → 45337, into byteimage, ranging from 0 → 255.

To display this image. . .

tv, byteimage

5. EXPLORING THE IMAGE WITH trc AND profiles

What do you see in this Image? All you see is two white dots! These two dots are the strongest

X-ray sources in the sky—the one on the left is a point source called “Cygnus XR-1”, and the one

on the right is the Vela supernova remnant, home of the famous “Vela pulsar”. Where are these

sources located? Use trc to find the pixel coordinates of these sources. trc is just a wrapper that

calls tr rdplot with useful settings. Type

trc, x, y

– 9 –

Then move the cursor inside the plot window. Left clicks write and record the (x,y) values in the

coordinate system you select (i.e., data, device, normal; default is data). A middle or left click

will exit the program. Notice that the crosshairs are clipped at the axes: it’s often useful to make

the crosshairs extend to the edges of the window. This is accomplished by passing the /noclip

keyword, and since we can use minimum matching when calling keywords in IDL, /noc will be

good enough:

trc, x, y, /noc

If you don’t want to store the positions of your left-clicks in x and y, then you don’t need to include

them in the procedure call. For more details, see the documentation of trc and tr rdplot.

These images contain much more than just these two sources! To see more, we need to change

the contrast—change the ‘dynamic range’—by invoking a nonlinear mapping of data d to screen

intensity I. In particular, we need to change one or more of (dbot, dtop, γ). How much should we

expand the dynamic range? We might make a guess and try dbot = −174 and dtop = 2000. If that

didn’t give a nice result, we could try some other values.

But we don’t have to guess! IDL provides several nice ways to interactively sample the image.

You can get a quick feel for the interesting data range by just doing plot, image and visually

estimating the range of interest. More instructive is to sample the image itself using profiles,

which plots horizontal or vertical cuts of the image. Type

profiles, byteimage

and follow the printed instructions; it plots profile cuts across the image, horizontally or vertically,

at positions selected by the cursor. These profile plots are for the byte image. More useful is

plotting of the original data array image:

profiles, image

which plots the original numbers. Notice that a new window has been created. Move the cursor

inside the plot window containing the displayed image. You now see the profiles in the newly

created window (labeled Profiles). Initially, you see intensity versus the x data coordinates. Left

click toggles betwwen horizontal/vertical; right click exits the program and closes the profiles

window.

In our example, this plot is so compressed that it is virtually worthless, because the plot

automatically scales to the minimum and maximum values of the array; you can get around this

easily by using the < and > operators, or by setting the system variable !y.range (easiest way:

use our ver procedure, like this:

ver, 0, 2000

profiles, image

ver

– 10 –

After some inspection we see that limiting the data range to 200 → 1400 with γ = .003125

would indeed be a good start.

6. MANIPULATING THE IMAGE BY MANUALLY CHANGING THE

COLORTABLE

Now, having determined suitable values for dbot, dtop, and γ, we want to display the appropriately-

scaled image. To display the data range and gamma mentioned just above, we again use the bytscl

command as above but limit the data range by typing. . .

byteimage = bytscl(image^ gamma, min=200^ gamma, max=1400^ gamma)

Now display this with

tv, byteimage

and, instead of just the two strong sources, you see beautiful diffuse emission with lots of structure,

which is produced by hot, ∼ 106 K gas heated by the expanding shock of the supernova remnant.

7. EXPLORE AND HAVE SOME FUN WITH THIS IMAGE!

There’s lots more in image processing and display. Of course, you can manipulate images

mathematically, just as you can any other IDL variable or array—but remember to manipulate

the original array instead of its byte counterpart. For detailed pixel-by-pixel sampling, try rdpix,

image. You can make a histogram [e.g. histo = histogram(image)] of the original image; this

tells you where most of the brightness data are concentrated. And if you’re interested in only a

portion of the image, you can select this portion with the cursor using defroi (“defiine region of

interest”). You can do “histogram equalization” with hist equal; this is a simple way to see most

of the interesting structure:

tv, hist equal(image)

You can rotate with rotate or rot, transpose, zoom, draw contours, label your images and make

coordinates using plot (with the /noerase keyword) and xyouts, etc., etc., etc.

Play around with contrast by experimenting with dbot, dtop, and especially gamma. When you

increase the sensitivity to small numbers by using γ < 1, you see the diffuse background. See that

huge circular structure in the middle? That’s the “North Polar Spur”. It occupies an angle of

about 120◦. It’s close—almost touching our noses! It’s caused by several dozen supernovae that

have exploded, producing a “superbubble”. These supernovae were located in the large cluster

of young stars in the Scorpio constellation—some of the stars you see there on a dark night will

explode as supernovae some day, adding to the energy stored in the hot gas and brightening the

– 11 –

X-ray emission. You also can see a bunch of fairly weak point sources and other diffuse structures.

To learn the range of native IDL capabilities, enter IDL and type “?”, which brings up the

online help window. Go to the bottom left and click on “Contents”, then “Routines (by topic)”,

and take a look at the sections entitled “Array Manipulation”, “Color Table Manipulation”, “Direct

Graphics”, “Image Processing”, “Plotting”, “Signal Processing”.

