
DISCREETLY FINE TIMES

with

DISCRETE FOURIER TRANSFORMS

(DFT’s with DFT’s)

or

“WHY DOES THAT FFT OUTPUT LOOK SO WEIRD???”

c©Carl Heiles December 28, 2005

“Spectral analysis” means describing a time-varying signal by its power spectrum, otherwise

known as its Fourier spectrum or its frequency spectrum. It should be obvious that such spectra

are essential for astronomers: for example, spectra tell us not only about pulsar periods, but also

about chemical composition in stars and Doppler velocities. But the description of signals in terms

of spectra or Fourier components has importance in many fields, and this becomes obvious on just

a little reflection. A prime example: a bridge is subject to shaking by earthquakes; if its natural

resonance frequency is close to the frequency of ground movement, you’ve got trouble!

Spectral analysis is an integral part of some of our labs. We will sample signals at regular

intervals with our computers, a process known as “discrete sampling”, and our computers will

change the voltages to digital numbers, a process known as “digitization”. We’ll then do a discrete

Fourier transform to calculate the power spectrum. There are some intricacies with this process. . .

Contents

0 THE INTEGRAL FOURIER TRANSFORM: TIME ↔ FREQUENCY 3

0.1 Classical Fourier transforms . 3

1 EFFECTS OF T BEING FINITE: INTEGRAL TRANSFORMS 4

1.1 Spectral Resolution . 4

1.2 Spectral Leakage . 5

2 DISCRETELY SAMPLED SIGNALS 5

2.1 Discretely-Sampled Signals: The Nyquist Criterion. 6

2.2 A Popular MISCONCEPTION!!! . 6

3 DISCRETE SAMPLING AND THE FOURIER TRANSFORM 7

3.1 The maximum recoverable bandwidth: the Nyquist frequency 7

– 2 –

3.2 Summary: The Two Fundamental Parameters in Discrete Sampling and Fourier

Transforms . 8

4 THE DISCRETE FOURIER TRANSFORM AND DISCRETE SAMPLING 8

4.1 IMPORTANT DETAIL Regarding Limits of Summation and Periodicities 9

4.2 Again: The Periodic Nature of the Discrete FT . 10

5 THAT WEIRD-LOOKING POWER SPECTRUM—IT’S JUST A MATTER

OF STANDARD CONVENTION 10

5.1 Enough Preaching! Let’s Try an Example in IDL 11

5.2 Is this weirdness perfectly clear? . 13

5.2.1 Verbal Description . 13

5.2.2 An Example . 14

5.2.3 Wait a Minute! You Mean the TIME Isn’t CONTINUOUS? 16

6 THE SPECTRUM AT AN ARBITRARY FREQUENCY 16

6.1 Two examples . 17

6.1.1 The first example: a spike centered on integral k 17

6.1.2 The second example: a spike not centered on integral k 19

6.2 The repeating windows for nonintegral k . 19

7 THE FAST FOURIER TRANSFORM 19

7.1 On Padding with Zeros . 20

8 CORRELATION AND CONVOLUTION 20

8.1 Digital Calculation of the Autocorrelation Function. 22

8.2 !!!!!!!!!!WARNING!!!!!!!!! . 23

8.3 Calculating correlation functions in IDL . 23

8.4 Calculating the Fourier Transform of the Autocorrelation Function 24

8.5 The FX versus XF methods: Not Entirely Equivalent!! 24

– 3 –

9 COSINE AND SIN TRANSFORMS 25

10 SOME FINAL POINTS 27

10.1 What’s This Business About Negative Frequencies? 27

10.2 For Real Inputs, How Do These Negative Frequencies Enter the Power Calculation? 28

10.3 A Detail on Normalization and “Going Back and Forth” 28

0. THE INTEGRAL FOURIER TRANSFORM: TIME ↔ FREQUENCY

0.1. Classical Fourier transforms

We use the Fourier transform (FT) to convert a time-varying voltage E(t) from the time to

the frequency domain E(ν), and vice versa. The formally correct equations are

E(ν) =

∫

∞

−∞

E(t)e[2πi]νtdt (0.1a)

and, to go the other way,

E(t) =

∫

∞

−∞

E(ν)e−[2πi]νtdν (0.1b)

In our case, we are going to modify this a bit so that we don’t run into infinities. We will

write. . .

E(ν) = lim
T→∞

1

2T

∫ +T

−T
E(t)e[2πi]νtdt . (0.2)

We are often interested in the power spectrum. Power goes as amplitude squared, so the power

spectrum P (ν) ∝ E(ν)2. A small complication: E(ν) can be complex, but the power spectrum is

just watts per Hz and must be real. We take care of this by defining

P (ν) = E(ν)× [E(ν)]∗ , (0.3)

where the superscripted [E(ν)]∗ means the complex conjugate. This multiplication is the equivalent

of “detection”.

– 4 –

1. EFFECTS OF T BEING FINITE: INTEGRAL TRANSFORMS

There’s a fundamental fact of the real world: we don’t live forever, and even if we did TAC’s

wouldn’t allow us infinite telescope time for our precious projects, so we never can allow T → ∞.

This frustrates the old politicians who want absolute control over everything, forever. Less seriously

in some circles—and more in others—it has two major ramifications for Fourier transform devotees:

1. It limits the frequency resolution.

2. It produces “spectral leakage”: The result at a given frequency in the Fourier transform

spectrum is contaminated by those at all other frequencies in the spectrum!

We treat these two ramifications in the following subsections.

1.1. Spectral Resolution

Equations 0.1 and 0.2 are fine as they stand, but when we sample a signal T is finite. This

limits our spectral resolution. To understand this, consider the analytic solution of equation 0.2

for a monochromatic cosine wave of frequency νs, that is E(t) = cos(2πνst). For T → ∞, E(ν) = 0

except for ν = νs; this is commonly expressed by the term “Dirac delta function”. But more

generally, we have as the analytic solution

E(ν) =
sin(2π(ν − νs)T)

2π(ν − νs)T
. (1.1)

It is simpler to write δν = (ν − νs) and write

E(ν) =
sin(2πδνT)

2πδνT
. (1.2)

P (ν) =

(

sin(2πδνT)

2πδνT

)2

. (1.3)

and we see that this is just the famous sinx
x type behavior. This quantitatively expresses the degra-

dation in frequency resolution when you sample for a finite time; roughly, the spectral resolution

is the width of this function, which is ∆ν ∼ 1
T .

In optical and IR astronomy, the need for high spectral resolution leads to the requirement of

long time delays, which in turn means long path lengths. For grating and prism spectrometers, this

can be achieved only by using physically large devices. For a Fabry-Perot, the long path is achieved

by multiple reflections. In terms of the conventional definition of resolving power, ∆λ
λ ∼ λ

size .

There’s no way around this!

– 5 –

1.2. Spectral Leakage

Not only is the infinitesimally-narrow delta function replaced by a function of width ∼ 1
2T

but also the function sinx
x has “sidelobes”: it spreads power out over a huge range of frequencies,

albeit—after squaring, anyway—at a low level. The spread-out power gets weaker as you move away

from the signal, that is as δν increases—but it doesn’t decrease monotonically. Rather, the sidelobes

mean that there the spread-out power goes to zero periodically for δν = 1
2T . In colloquial terms,

the power of the monochromatic sine wave “leaks” away in the power spectrum to all frequencies.

Not surprisingly, this is called “spectral leakage”. It’s covered in NM chapter 13.4.

You can reduce spectral leakage by using a “window function” W (t) that is not “square”.

What on Earth does this mean? In equation 0.2, when you use a finite T you are integrating over

a “window” of total length 2T , as follows:

E(ν) =
1

2T

∫ +T

−T
W (t)E(t)e[2πi]νtdt . (1.4)

In equation 0.2, the window function W (t) is unity; when we let W (t) = 1 for the time window

of length 2T , then this is called a “square window function”. A square window function produces

“sharp edges” in the sense that the function E(t) has its full amplitude for all t within the window

and then cuts off precipitously at the ends of the window. It’s this sudden cutoff—the sharp

edge—that produces spectral leakage.

We can reduce spectral leakage by making W (t) a function that produces a gradual cutoff so

as to eliminate the sharp edge. We make W (t) a function that gradually falls to zero at the window

edges −T and T . As one possible example among many, consider the Hanning weighting function,

which is commonly used in radio astronomy:

W (t) =
1

2

(

1 + cos
πt

T

)

. (1.5)

This drastically reduces the sidelobes. This comes at a price, though: the spectral resolution gets

worse—by about a factor of two. The reason is that the window function W (t) goes to zero at the

ends of the time window 2T , which effectively makes the window shorter. Note: We also use the

term “weighting function” for W (t).

2. DISCRETELY SAMPLED SIGNALS

When I was a teenager we had vinyl records. They contained continuously-sampled signals

that were directly imprinted on the vinyl. Today we focus on CD’s. These contain discretely-

sampled signals that are digitized and written on to the little silver disk. The fact that CD’s

– 6 –

contain discretely sampled data means that the signal is known only for certain specific times. In

particular, the signal is not sampled between these times. Does this mean that CD’s don’t sound

as good as the vinyl records?

Regarding the calculation of our power spectrum with a FT, you’d think that the replacement

of an integral by a sum would be straightforward, with no subtleties. But this isn’t the case. There

are subtleties, and they are crucial. Understanding them, and dealing with them properly, makes

your CD’s sound just as good as vinyl. So read on: we’ll first provide a qualitative introduction

and then go into details.

2.1. Discretely-Sampled Signals: The Nyquist Criterion.

When your CD music is recorded, or in astronomy when we observe a pulsar or sample an

incoming signal to determine the spectrum, we sample the incoming signal sequentially in time, at

regular intervals called the sampling interval ∆t = tsmpl. Equivalently, we are sampling at a regular

rate called the sampling frequency νsmpl =
1

tsmpl
.

In discrete sampling, we first require that the signal be limited in bandwidth. That is, the

highest frequency in its spectrum must be limited to an upper cutoff, which we call the bandwidth

B; thus, the frequencies in the signal extend from 0 to B Hz. Then we must sample the signal

periodically at a fast enough rate—specifically, we require (νsmpl ≥ 2B Hz). This is the “Nyquist

criterion”. If the Nyquist criterion is violated, we have the problem of aliasing, which means that

signals with frequencies ν > B appear as lower frequencies. Remember those movies showing cars

and the wheels that seem to rotate backwards? That’s a real-world example of aliasing: the movie

frames discretely sample the scene at too slow a rate to faithfully reproduce the wheel’s rotation.

You can understand aliasing by looking at Figure 2.1.

To put it another way: When we sample at rate νsmpl, the maximum signal frequency that can

be faithfully reproduced is
νsmpl

2 . This is called the Nyquist frequency and here we denote this by

fN =
νsmpl

2 . Clearly, the signal’s bandwidth B must satisfy B ≤ fN . All this is called the sampling

theorem.

How rapidly must music be sampled for recording on a CD? The human ear responds to

something like 20 kHz. To prevent aliasing, we need to sample at twice this, at about 40 kHz.

2.2. A Popular MISCONCEPTION!!!

Somebody, sometime, will probably tell you that aliasing has to do with discrete Fourier

transforms. Tell them to go jump in the lake. It has to do with the sampling rate. Period. Aliasing

occurs if you don’t sample fast enough, and affects your results whether or not you are dealing with

Fourier transforms. If you don’t believe me, just look again at Figure 2.1. And remember what

– 7 –

Fig. 2.1.— Aliasing at its worst. The sample interval is tsmpl = 0.01 s, so the sample frequency

is νsmpl = 100 Hz. The Nyquist frequency is fN = 50 Hz. The stars are the datapoints. The two

signals shown are at frequencies 37.5 and 62.5, i.e. fN ± 12.5 Hz. Which signal do the datapoints

represent?

happens to rotating wheels in movies.

3. DISCRETE SAMPLING AND THE FOURIER TRANSFORM

We use the Fourier transform to convert from the time to the frequency domain, and vice versa.

For continuously-sampled signals we use the Fourier integral, equation 0.2. For discretely-sampled

signals we have to replace this by a summation. This is the discrete Fourier transform, or DFT.

3.1. The maximum recoverable bandwidth: the Nyquist frequency

OK, we’ve sampled our signal at regular intervals tsmpl, meaning that the sampling frequency

is νsmpl =
1

tsmpl
and fN =

νsmpl

2 . If we do this for time 2T then we obtain 2J = 2T
tsmpl

independent

points. From these we wish to compute the spectrum.

If we want to digitally compute the Fourier transform, then the first thing we must realize that

the original 2J channels provide only J spectral points! This seems like a loss of information, but

it’s not: the spectrum is complex, so those J complex numbers contain 2J independent numbers.

With sample frequency νsmpl we obtain the spectrum for the range of frequencies 0 →
νsmpl

2 or

0 → fN ; this is known as the bandwidth, denoted by B. With J independent points, the separation

(and the frequency resolution) is ∆ν =
νsmpl

2J . Fortunately,
νsmpl

2J = 1
2Jtsmpl

= 1
2T ; this confirms our

– 8 –

earlier discussion in §1.1 about frequency resolution.

But more importantly for the present discussion, when sampling at rate νsmpl you cannot

recover a spectrum wider in bandwidth than fN =
νsmpl

2 .

Amazingly, a discretly sampled time series occurs where you’d least expect it: in a common,

garden-variety optical analog device, namely the classical optical grating spectrometer. The incom-

ing light strikes the grating at angle θ away from the normal and for the first order reflection leaves

at the same angle. Thus the difference in time delay from one groove to the next is 2s cos θ
c , where s

is the groove separation. You don’t have any information for time differences between these values.

So this is exactly equivalent to tsmpl, so the maximum fractional bandwidth is fN
f = 1

4 s
λ
cos θ . To

attain a substantial fractional bandwidth, e.g. fN
f > 1/2 say, we require the spacing s < λ/2 cos θ.

Moreover, to avoid aliasing it’s absolutely necessary to insert a filter in front of the grating to limit

the input bandwidth.

3.2. Summary: The Two Fundamental Parameters in Discrete Sampling and

Fourier Transforms

The above two parameters are the fundamental ones.

(1) To prevent aliasing, we must satisfy the sampling theorem: the total signal bandwidth B

must be small enough , so B ≤ fN , or B ≤
νsmpl

2 .1 Usually you need to limit the bandwidth with

a filter.

(2) In the Fourier-transformed power spectrum, the spectral resolution is the reciprocal of the

total time over which the FT is computed: ∆ν = 1
Ttot

.

4. THE DISCRETE FOURIER TRANSFORM AND DISCRETE SAMPLING

With the DFT, we have to replace the Fourier integral in equation 0.2 by a summation. Let’s

do this with a one-to-one correspondence of the terms. First we rewrite equation 0.2 to make it

easier for a direct comparison:

E(ν) =
1

2T

∫ +T

−T
E(t)e[2πi]νtdt . (4.1)

In our discretely-sampled case we can replace t by jtsmpl, defined for j = −J → J ; ν by
kνsmpl

2J ;

1For complex input, which can occur in radio astronomy and some other applications, the discussion becomes

more interesting.

– 9 –

and dt by tsmpl. We would calculate E(
kνsmpl

2J) for k = −J → J , so the summation looks like. . .

E(
kνsmpl

2J
) =

1

2Jtsmpl

J−1
∑

j=−J

E(jtsmpl)e
[2πi]νsmpltsmpl

jk

2J tsmpl . (4.2)

Here we’ve taken dt = ∆t = tsmpl∆j = tsmpl (i.e., ∆j = 1). The product tsmplνsmpl = 1, so we can

simplify our notation by eliminating these variables, replacing
kνsmpl

2J by the much simpler k, and

replacing jtsmpl by just j and writing. . .

E(k) =
1

2J

J−1
∑

j=−J

E(j)e[2πi]
kj

2J . (4.3)

4.1. IMPORTANT DETAIL Regarding Limits of Summation and Periodicities

Are you paying attention? If so, you should be asking why the upper limit in equation 4.3 on

the sum is J − 1 instead of J .

One reason is that a sum from −J → J has (2J + 1) samples. But we have only 2J samples.

So we can’t possibly sum from −J → J .

This doesn’t matter at all. To begin with, look at equation 4.3 carefully: you can verify for

yourself that the trig portion—that is, the e2[πi]
kj

2J term—is periodic in both j and k, with period

2J . That is, you can use either k or (k + 2J)—you’ll get the same answer. Same with j.2 And

one other thing: the discrete Fourier transform makes the implicit, intrinsic, completely irrevocable

assumption that the input signal E(j) is also periodic with period 2J . Thus the entire quantity

being summed is periodic with period 2J . This means, also, that the result of the summation,

namely E(k), is also periodic with period 2J . The intrinsic, irrevocable assumption that E(j) is

periodic means that we only need to know 2J values of E(j); the j = 2J value is equal to the j = 0

value.

Now, everybody knows3 that when we replace an integral by a digital summation we regard

each sample as centered on a bin of width unity × ∆t. However, the samples at the end, with

j = −J and j = J , must have bins of width 1
2 × ∆t, so we’re supposed to include both E(−J)

and E(J) in the sum, each with a weight of 1
2 . But because of the 2J periodicity, we can instead

include just one and use a weight of unity.

2With the qualification that k is an integer, i.e. that you are calculating the result only for integral multiples of
νsmpl

2J
. We discuss this in more detail below.

3If you don’t believe me, go look at your elementary calculus book, in the chapter where integration was introduced.

– 10 –

The fact that E(j) is periodic with period 2J allows equation 4.3 to be written in its more

conventional form

E(k) =
1

2J

2J−1
∑

j=0

E(j)e[2πi]
kj

2J or E(k) =
1

N

N−1
∑

n=0

E(n)e[2πi]
kn
N . (4.4)

However, this form is valid only for integral values of k; see §6.2.

4.2. Again: The Periodic Nature of the Discrete FT

Above we discussed the periodic nature of both E(j) and E(k). Let’s delve deeper.

By its very nature, the Fourier transform wants to integrate to ∞. But the input signal doesn’t

go on forever! We have to resolve this basic incompatibility: the input signal is sampled for a finite

time, but the Fourier transform needs it to go on forever.

There’s only one way to resolve this incompatibility: we must assume that the input signal does

go on forever, and because we don’t know what happens outside the sampling interval −J → J ,

the only sensible thing to do is to assume that the input signal is periodic with period 2J .4

This assumption of “forever”, together with the associated 2J periodicity, leads to the necessary

result that the spectrum E(k) and its power spectrum P (k) = E(k) × [E(k)]∗ also go on forever,

k = −∞ → +∞, and are periodic with period 2J .

Because of these periodicities, we gain complete information on the spectrum by restricting

our attention to windows of length 2J : these windows are the finite intervals in (j, k) between the

dotted lines in figure 5.1. They can begin and end anywhere—all that matters is that their length

is 2J .

5. THAT WEIRD-LOOKING POWER SPECTRUM—IT’S JUST A MATTER OF

STANDARD CONVENTION

Above we let the indices j and k run from −J → J − 1. But in the real world of numerical

computing, we don’t use negative indices. You might think that the reasonable way to handle this

would be to displace the whole set of 2J values of E(j) and E(k) upwards by J so that the indices

run from 0 → 2J − 1 (this would be perfectly compatible with IDL’s indexing scheme). But this

4You might be surprised: why not assume the signal is zero outside the interval? Answer: most signals don’t stop

simply because we stop sampling them—for example, a pulsar. More Fundamental Answer: the math requires this

assumption!

– 11 –

would put the t = 0 or f = 0 point out in the middle, at j or k = J , and this isn’t very convenient

for lots of reasons.

Instead, realize that the FT is periodic in j with period 2J . Therefore, in equation 4.2 it

doesn’t matter whether you sum from j = −J → J − 1, from j = 0 → 2J − 1, or even (god forbid!)

from j = −3J + 7 → −J + 6. So we might as well just sum from j = 0 → 2J − 1 and not displace

anything at all. This is the standard convention, and it leads to the standard way in which FT

arrays are stored in memory—not just in IDL but in just about every software package. It has the

great advantage that the t = 0 or f = 0 point is the first one in the array.

Above we were discussing “the FT array”, without specifying whether it was the input or

output array. The arrangement for the input array works in exactly the same way as that for

the output array. And it doesn’t matter whether the independent variable for the array is time or

frequency. All FT arrays, whether input or output and no matter what the independent variable,

are arranged identically with respect to the negative and positive values.

5.1. Enough Preaching! Let’s Try an Example in IDL

Here we take an example with J = 32, with the discretely-sampled input signal being the sum

of three cosine waves: E(j) = cos(π 8j
32) + 0.5[cos(π 7j

32) + cos(π 9j
32)]. Thus we have power at three

frequencies: k = 7, 8, 9. There is twice as much voltage, thus four times the power at k = 8 than

there is at k = 7, 9. The power spectrum consists of these three nonzero points, plus a bunch of

zeros at all other frequencies.

In IDL, we denote E(j) by EJ and generate this 64-element array with the statements. . .

EJ = cos(!pi ∗ 8 ∗ findgen(64)/32) (5.1a)

EJ = EJ+ 0.5 ∗ cos(!pi ∗ 7 ∗ findgen(64)/32) + cos(!pi ∗ 9 ∗ findgen(64)/32)) (5.1b)

Figure 5.1 (top) shows the plot of the 64-element array EJ, with the 64 crosses marking the

computed points (or, in our parlance, the discretely-sampled points). The interference of the sine

waves makes the sampled signal look like a wave packet of frequency k = 8, attenuated at the

middle of the time interval where j ∼ 32.

The signal E(j) must be periodic with period 2J = 64 and it must go on forever. Figure 5.1

(bottom) shows this for a larger slice of time in which j = −128 → 128. Our points are computed

for IDL indices 0 → 63; this window is shown by the dotted lines on Figure 5.1 (bottom).

We take the Fourier transform [E(k) = FT (E(j))]. In IDL, we denote E(k) by EK and use

IDL’s Fast Fourier Transform (FFT) procedure. . .

– 12 –

Fig. 5.1.— Upper plots in Figs A and B show a 64-point time series and power spectrum. Lower

plots show a portion of an infinitely-long periodic time series and power spectrum from which the

64-point ones are extracted.

– 13 –

EK = fft(EJ) (5.2a)

and get then the power spectrum P (k) (PK in IDL). . .

PK = float(EK ∗ conj(EK)) (5.2b)

For convenience, we use the float to discard the imaginary portion of the product, which is zero—

this makes PK real, so that in later operations we don’t have to deal with a complex array (e.g.,

to plot the power spectrum we can type plot, PK instead of plot, float(PK)).

Figure 6.1 (top) shows the plot of the 64-element array PK, with the 64 crosses marking the

computed points returned by IDL. The positive frequencies lie in the IDL index range 1 → 32 and

the negative ones in the range 32 → 63. As expected, there is nonzero power at only three positive

frequencies, the ones with IDL indices 7, 8, 9. There is also power at the three corresponding

negative frequencies, the ones with IDL indices 55, 56, 57.

The power spectrum must be periodic with period 2J = 64 and it must go on forever. Figure

6.1 (bottom) shows this for a larger slice of frequency in which k = −128 → 128. IDL indices for

PK are 0 → 63; this window is shown by the dotted lines on Figure 6.1 (bottom).

5.2. Is this weirdness perfectly clear?

Probably not. So, in the following two subsections we go through this again in excruciating

detail. We provide first a detailed verbal description of the arrangement, and then the shortest

of short numerical examples. In the verbal description we focus on the output array to make

things specific, but we just as well could have focused on the input array and replaced the word

“frequency” by “time”. As you’ll see, this leads to something surprising. . . we’ll discuss it explicitly

(5.2.3).

5.2.1. Verbal Description

Again, we let the time for E(t) run from t = −T → +T , with T = Jtsmpl. The corresponding

frequencies run from f = −fN → +fN , with fN =
νsmpl

2 .

All FT arrays are arranged so that the first J + 1 channels contain the positive-frequency

portion of the transform. Again, here we focus on the output array. Thus, for channel k = 0 → J

the frequency of channel k is νk = +kfN
J . Thus, channel 0 contains the ν = 0 result, channel 1 the

ν = +fN
J result, . . . , up to channel J which contains the maximum frequency ν = +fN .

– 14 –

The remaining J − 1 channels contain the negative-frequency portion of the transform. As we

go from channel J to J + 1 we would go to the next highest positive-frequency point; but because

the FT is periodic with period 2J , this must be identical to the corresponding point at negative

frequency. This means that channel J contains not only the result for ν = +fN , but also the result

for ν = −fN . And the remaining J − 1 higher channels contain the rest of the negative-frequency

points, so for k = J → (2J−1) the frequency is νk = −fN + (k−J)fN
J . Thus channel J has ν = −fN ,

channel (J + 1) has ν = −fN + fN
J , . . . , and channel (2J − 1) has the ν = −fN

J result. If you

were to consider channel number 2J it would contain the next highest frequency, which is ν = 0;

of course, this is identical to the result in channel 0.

Note that frequency can always be considered to increase with channel number: you can even

regard the big backwards jump from +fN to −fN at channel J as not being a jump because

the periodic nature of the transform means that the results for these two frequencies must be

identical, and successively higher negative frequencies are equivalent to successively higher positive

frequencies above +fN .

So any FT array, for example the spectrum, contains 2J independent points. More generally,

the FT spectrum could contain 4J points, or 6J points, etc. We could calculate as many points as

we wish. However, because the FT is periodic, with period 2J , channel 2J + 1 would contain the

same result as in channel 1, etc. So there is no sense in calculating more than 2J points, because

the calculations would be redundant.

5.2.2. An Example

Consider a simple case with J = 4; you’ve taken 8 time samples. Then the proper way to

arrange the input to the FT is the following, where the left-hand matrix contains the IDL indices

and the right hand the times or frequencies:

0

1

2

3

4

5

6

7

↔

0× T
J

1× T
J

2× T
J

3× T
J

±4× T
J

−3× T
J

−2× T
J

−1× T
J

(5.3a)

and the output looks like

– 15 –

0

1

2

3

4

5

6

7

↔

0× fN
J

1× fN
J

2× fN
J

3× fN
J

±4× fN
J

−3× fN
J

−2× fN
J

−1× fN
J

(5.3b)

1

2

3

4

5

6

7

0 ,8−8

−7

−6

−5

−4

−3

−2

−1

Fig. 5.2.— Envisioning the window as a circle makes the relationship between negative and positive

frequencies or times. The numbers are the multipliers of the times and frequencies in equations

5.3.

We have been envisioning the FT array in linear space. However, the DFT is composed of trig

functions restricted to a given range in frequency and time. It’s helpful to step back and change our

view from linear space to circular space—to get back to fundamentals and recall that trig functions

are defined on the circle. As pictured explicitly in Figure 5.2, negative and positive frequencies,

and repeated windows, simply correspond to going around the circle more than once, or in the

opposite direction.

– 16 –

5.2.3. Wait a Minute! You Mean the TIME Isn’t CONTINUOUS?

Above we said—and we meant it—that in our verbal description we focused on frequency, but

we could just as well have focused on time. And in equation 5.3 above, where we explicitly listed

the time versus the IDL index, the time begins at 0 for IDL index 0, runs up to 3× T
J for IDL index

3, and then “wraps around” to negative times for IDL index ≥ 4. So it seems that time versus IDL

index is discontinuous—just like frequency.

Yes it’s true!! If you take a bunch of time samples and compute the FT, you should put the

negative time samples into the upper index ranges.

But for the calculation of just the power spectrum, it doesn’t matter whether you bother with

this reshuffling or not—you get the same answer whether or not you reshuffle. What it does matter

for is the cases for which you are really interested in the phase of the FT output array. Remember

that the output array E(k) in equation 4.2 is complex; the ratio of imaginary to real parts gives

the phase of the signal. This phase is defined with respect to t = 0. If you want the phase to be

correctly defined, and if you want to regard the samples as extending from −T → T instead of

0 → 2T , then you must reshuffle the discrete time samples according to the above prescription.

Of course, the power spectrum doesn’t have any phase information: it’s only a specification of

the power versus frequency. In other words, detected signals have no phase information. In our lab

work we generally don’t care about the absolute phase of the signal, so you have no need to carry

out the index reshuffling before computing the FT.

6. THE SPECTRUM AT AN ARBITRARY FREQUENCY

Equation 4.3 provides results for discretely-spaced frequencies at intervals ∆ν =
νsmpl

2J . It’s

often nice to have results for arbitrary frequencies. One way is the brute-force approach of equation

4.2, which we repeat here in slightly modified form:

E(
κνsmpl

2J
) =

1

2J

J−1
∑

j=−J

E(j)e[2πi]
jκ

2J . (6.1)

Here we have eliminated tsmpl and νsmpl on the right hand side and replaced k by κ to emphasize the

fact that κ can be a non-integer. (For non-integral k, you must carry the sum from (−J → J − 1)

and not (0 → 2J − 1); see §6.2).

This is fine as long as you don’t want to compute a lot of frequencies. However, suppose

you want to create four interpolated points per original point so that you have a good visual

representation of the spectrum. Each point requires ∼ 2J operations, so this can be a lot of

computing.

– 17 –

Instead of calculating the points from the whole time series, you can interpolate using the

spectral points themselves. In principle, you need to include all points when computing these

interpolations. For uniform weighting, the proper interpolation formula in the frequency domain is

(Brault & White)

E(ν) =
1

2J

2J−1
∑

j=0

E(j)
sin[π(ν − νj)(2Jtsmpl)]

tan[π(ν − νj)tsmpl]
(6.2)

Note that (2Jtsmpl) = 2T = the total time; many texts use T as the total time.

If you are willing to live with approximate results, then you can save a lot of computer time

by including just a few original data points on each side of the point you’re calculating because

most of the contribution comes from those nearby points. For example, a good approximation is

E(ν) =
∑

jnearby

E(j)
sin[π(ν − νj)(2T)]

π(ν − νj)(2T)
(6.3)

where jnearby is a set of nearby frequencies in the original spectrum chosen as a compromise between

accuracy and speed. This equation makes sense: you are weighting the spectral points in proportion

to their sidelobe response in equation 1.1. Restricting jnearby to the nearest few spectral channels

to ν is sufficient for many purposes.

Note: Strange as it may seem, the denominators in equations 6.2 and 6.3 are written correctly.

6.1. Two examples

We consider two examples. Both have 64 datapoints; note that 64 = 26.

6.1.1. The first example: a spike centered on integral k

First, the example of [E(j) = cos(2π
νsmpl

8 t)]. This is a monochromatic wave whose frequency

is exactly one-quarter the Nyquist frequency, i.e. when plotted it is exactly one-quarter the way

between 0 and fN . It falls exactly on an integral value of k. We show the resulting E(
kνsmpl

2J) by

the stars in Figure 6.1 (top), and we show the almost-continuous curve from fractional values of

κ in equation 6.1 as the solid curve. The stars are nonzero only for one single value of k. This is

because the signal frequency is exactly centered on the frequency represented by this value of k.

But look at the solid curve. You might have thought that this would be symmetric about the

signal frequency; this is what the analytic equation 1.1 seems to suggest. But it’s not symmetric.

The reason is that, because the signal is real, the spectrum is Hermetian. Hermetian means that the

– 18 –

Fig. 6.1.— Monochromatic signals with frequency 12.5 Hz (top) and 10.0 Hz (bottom). The sample

interval is tsmpl = 0.01 s, so the sample frequency is νsmpl = 100 Hz and the Nyquist frequency is

fN = 50 Hz. Stars are from the FFT, located at frequencies (−fN + k∆ν) [∆ν = 1
2T]; the solid

curve joins much more closely spaced points calculated using equation 6.1.

negative frequency real part is equal to the positive frequency real part. (In this case, the signal is

symmetric in time, so the imaginary components are zero.) The sidelobes of the negative frequency

part interfere with those of the positive frequency part, which causes the asymmetry. If you include

the negative frequencies in the analytic calculation, then you also find that the sidelobes are not

– 19 –

symmetric.

Similar asymmetries in sidelobe structure occur in the high end of the spectrum because of

aliasing: The sidelobes of the sinx
x function go on forever, so they exist at frequencies beyond

the Nyquist frequency. They are aliased back into the displayed spectrum and this also produces

asymmetry.

6.1.2. The second example: a spike not centered on integral k

Second, the example of [E(j) = cos(2π
νsmpl

10 t)]. This is a monochromatic wave whose frequency

is exactly one-tenth the Nyquist frequency, i.e. when plotted it is exactly one-fifth the way between

0 and fN . But, in contrast to the previous example, it does not fall on an integral value of k.

Again we show the resulting E(
kνsmpl

2J) by the stars in Figure 6.1 (bottom), and we show the

almost-continuous curve from fractional values of κ in equation 6.1 as the solid curve. The stars

are nowhere zero because the signal is centered on a non-integral value of κ. Comments about the

sidelobe asymmetry apply here too, of course.

6.2. The repeating windows for nonintegral k

We have extensively discussed the periodic nature of the discrete FT in §4. Specifically, equa-

tion 4.3 shows this periodicity: both the input signal and the output spectrum are periodic with

period 2J . But for the input signal, this periodicity exists only if k (κ in equation 6.1) is an integer.5

If κ is not an integer, then the interpolated spectra (i.e., for nonintegral κ) at frequency offsets

of Jνsmpl (equal to 2JfN) are not identical. Fundamentally this is an effect of the time-shift property

of FT’s. Nevertheless, for the integral values of k, which provide the basic spectral information,

the spectra at frequency offsets of Jνsmpl (equal to 2JfN) are identical. Here the digital world

triumphs over the time-shift theorem!

7. THE FAST FOURIER TRANSFORM

The Fourier transform as defined in equation 4.4 requires of order (2J)2 operations: 2J fre-

quencies to be computed, each of which requires a sum over 2J datapoints. Many applications

generate huge values of J and the computing time becomes impractically long.

Enter the FFT. The fundamental idea is to split the FT into smaller chunks. Suppose, for

example, you have 2N datapoints. You split the FT into 2N

2 chunks each of which contains only two

5Similarly, for the spectrum this periodicity exists only if j is an integer—but j is always an integer!

– 20 –

numbers; you FT each pair; then you put the chunks back together again. This works and requires

only ∼ N log2N operations. This has two advantages: The obvious one is computing time. The

less obvious one is numerical accuracy: fewer operations means smaller roundoff errors in the final

result.

Suppose you have an arbitrary number M of datapoints. IDL’s FFT routine factors M into

as many chunks as possible. It’s most efficient for chunks that are powers of 2, 3, or 5. The more

factors, the faster the runtime. People tend to think of and always use powers of 2, and this is

indeed the fastest kind of FFT, but the presence of other factors can be quite acceptable.

This can lead to large apparent anomalies in runtime. You might have M equal to some large

integral power of 2. If then you add just one more point, M might be a prime number! (An easy,

but not interesting, example is M = 16). The difference in computing time can be enormous. IDL’s

FFT doesn’t warn you about these matters, so you have to think of them yourself—beforehand!

If you have an awkward value of M , then you can create a nice power-of-two value either by

cutting out datapoints (do you really want to do this???), or by padding your datapoints with

enough zeros to produce the requisite power-of-two condition.

7.1. On Padding with Zeros

Consider padding with zeros. Suppose you are taking datapoints as a function of time t.

To retain the proper phase of the signal you need to pad the signal at its beginning and end,

symmetrically with equal numbers of zeros at negative and positive times. Recall, however, that

in the FFT algorithm the t = 0 point is shifted to the beginning. This means that the two ends of

the datastream abut at the middle of the shifted array. This, in turn, means that you need to add

the zeros all in the middle of the array that you use in the FFT procedure.

8. CORRELATION AND CONVOLUTION

Two important theorems regarding FT’s:

1. The convolution theorem:

FT [s ∗ r] = FT (s) · FT (r) = S(f)R(f) (8.1a)

where the capital letter functions mean the FT versions and the convolution is defined as

[s ∗ r](t) =

∫

∞

−∞

s(ts)r(t− ts)dts (8.1b)

– 21 –

In words, this reads: The FT of the convolution of two functions is the product of the FT’s

of the functions. Regard convolution as the smoothing of one function, the singal s(ts), by

another, the response function r(∆t). .

The classical example of convolution is in electric circuits. A signal varies with time (“signal

time”) ts. It passes through some electronic black box, for example an RC circuit. This circuit

has impulse response r(∆t) = e−∆t/RC , where ∆t is the time after the impulse is applied; the

FT is RC
1+[2πi]RCν , so it acts as a low pass filter, attenuating high frequencies.

A good astronomical example is atmospheric seeing: the star image, which is infinitesimally

sharp, is blurred by the atmospheric seeing. If the seeing is Gaussian, then the observed star

image is the convolution of its true image with the atmospheric Gaussian. This example, as

many, has a symmetric response function, in contrast to the above RC circuit example.

An important aspect of convolution is the reversal of the sense of “signal time” ts, or the

independent variable whatever it is, for the response function r in the integral. The re-

sponse function gets flipped. This flipping seems strange—but it’s important. For symmetric

response functions, as we often encounter in astronomy, this doesn’t matter—but be aware!

2. The correlation theorem:

FT [corr(s, r)](τ) = FT (s(t)) · [FT (r(t))]∗ = S(f)R∗(f) (8.2a)

where the correlation is defined as

[corr(s, r)](τ) =

∫

∞

−∞

s(t)r(t+ τ)dt (8.2b)

In words, this reads: The FT of the crosscorrelation of two functions is the product of the

FT of one function by the complex conjugate of the FT of the other.

The classical and most important example of crosscorrelation is in deriving power spectra.

Here, we take two time series, compute their integrated product as a function of the delay τ ;

the power spectrum is the FT of this cross correlation function.

This theorem is particularly important for the autocorrelation function, namely the crosscor-

relation of a function with itself. Here, the theorem reads: “The power spectrum, defined as

the FT of the signal times its complex conjugate, is equal to the FT of the signal’s autocorre-

lation function.” This has wide use in radio astronomy and, also, in spectral interferometry.

There are two methods of calculating power spectra: First, the classical one, the FT of the

signal times its complex conjugate; this is called the FX method [Fourier Transform, then

multiplication (detection)]. Second, the XF method: (multiplication, then FT). The sec-

ond method is popular with radio astronomers because it is easy to design a hugely parallel

processor to do auto- and crosscorrelation.

– 22 –

Aside from the use of the correlation theorem in spectral analysis, there are two important

applications of these theorems. One is in calculating convolutions. If you have a big CCD image

and want to calculate what it would look like under various conditions of atmospheric seeing, you

need to convolve the seeing function with the image. This requires ∼ N2 operations, where N is the

number of pixels. Using FFT techniques, you cut this to ∼ N log2N . The other is in deconvolution:

the product of two FT’s convolves, while the ratio of two FT’s deconvolves—it’s magic! There are

issues regarding noise and zeros in the denominator, though! See NM §13.1.

These theorems are identical if the response function r is symmetric. We will assume this to

be the case and focus the discussion on autocorrelation as the specific example.

8.1. Digital Calculation of the Autocorrelation Function.

The way to digitally calculate the autocorrelation function A(τ) of the time-dependent function

E(t) is to carry its definition, which is by an analytic integral, to numerical summation in the

standard way. We begin shifting the origin of the time axis so that all times are positive, which is

the way we usually think of our samples, so we write

A(τ) = lim
T→∞

1

2T

∫ +2T

0
E(t)E(t+ τ)dt . (8.3)

For example, if E(t) = sin(2πνt), then A(τ) = cos(2πντ). This illustrates the general property

that autocorrelation removes all phase information. (It has to: it’s symmetric in τ , so its FT is

always real!)

Now let’s translate this into a digital sum. We have 2N discrete samples separated uniformly

in time by ∆t = tsmpl =
1

νsmpl
. Recall your elementary calculus in which an integral was defined by

cutting up the x-axis into tiny bits and taking a sum over the bits. Here we are integrating over

time, so it makes sense to make the “tiny bit” equal to the sample time tsmpl. In terms of sample

number n, we can write t = ntsmpl and dt = tsmpl, so E(t) = E(ntsmpl) and, for convenience, we

just write E(n). Similarly, we will calculate A(τ) only for discrete values of τ whose increment is

also tsmpl; we write τ = jtsmpl and, as for E, we write A(j) instead of A(jtsmpl). With all this, the

direct analog of equation 8.3 in summation form is

A(j) = lim
N→∞

1

2N

2N−1
∑

n=0

E(n)E(n+ j) . (8.4)

This looks innocent enough, but it misses a fundamental fact of the real world: we don’t live

forever, so we can’t let N → ∞. No problem; we just get rid of the limN→∞ and write the even

simpler form

– 23 –

A(j) =
1

2N

2N−1
∑

n=0

E(n)E(n+ j) . (8.5)

But wait! We have just 2N samples of E—that is, E(n) is defined only for n = 0 → 2N − 1. So in

the sum, whenever n + j > 2N − 1, we’re in trouble—we have no samples to put in the sum! In

other words, when N is finite, you have the problem of “end effects”. What to do?

Now’s the time to go back and review §4 and figure 5.1. There we stressed that the summation

form of the FT implicitly, and necessarily, assumes that both the input and output arrays are

periodic outside the fundamental window of length 2N—and the period is just 2N . So it’s obvious

what to do: when n+ j > 2N − 1, you use E(n+ j − 2N).

Similarly, A(j) is periodic with period 2N . Thus, A(j) is defined for the interval j = 0 →

2N − 1. And, of course, this periodicity makes it easy to generate values for j < 0.

8.2. !!!!!!!!!!WARNING!!!!!!!!!

Re-read the paragraphs immediately above. They state that the end effects are no problem

because the math automatically “wraps around” in the calculation of correlation functions. This

means that the beginning of the data stream gets correlated with the end of the data stream!

Generally speaking, you don’t want this to happen because the beginning and end are distinct and

totally unrelated!

What do do? Pad the beginning and end symmetrically with zeros! (Be sure to look at §7.1).

This ensures that the two ends of the data stream do not interact. And make sure you use enough!!

See NM discussion §13.1.

8.3. Calculating correlation functions in IDL

IDL provides several native routines for calculating correlation functions. You have to be very

careful, though. Read their documentation before blindly forging ahead. Here we summarize.

You might be tempted to use the routines a correlate and c correlate for auto- and crosscor-

relation. Be aware that these don’t do what you think. First, they subtract the mean before doing

the calculation—something you don’t want, if for no other reason that the zeros you so carefully

padded with become nonzero when the mean is subtracted! Second, they have sliding limits on the

sums, meaning that different numbers of terms are included for different delays. I’d stay away from

these procedures if I were you. Frankly, I can’t imagine any circumstance for which they would be

useful.

What you want is IDL’s convol routine, which convolves two arrays and allows you to

– 24 –

“edge wrap”, which is the equivalent of wrapping around as you need to do to account properly

for the edge effects in correlation as discussed above in §8.1. convol works on all types of arrays,

but uses only the clunky non-FFT technique. You call this function as result = convol(array1,

array2, /center /edge wrap). Catch number 1: array2 needs to be smaller than array1. If

your arrays have the same size, you need to expand array1 (padding) or condense array2. When

padding, be aware of the edge effects of convolution: if the edges of the datastream are nonzero and

you pad with zeros, convolution will give you a large meaningless contribution at the edges! Catch

number 2: The center keyword is set by default, in which case convol does a correlation instead of

a convolution! To force a convolution, explicitly set center=0 in the call to convol; in this case,

for a symmetric kernal array2 the output is shifted from the input by M
2 , where M is the size of

array2.

Or, to make it quicker, use the FFT technique! For one dimensional arrays this is easy

(but you’d better experiment with some known simple functions to make sure you understand the

details). For two dimensional arrays, you can use the Goddard library’s convolve function, which

gives you the choice of using either the FFT or the standard (clunky time consuming) technique.

Unfortunately, convolve uses FFT only on 2-d images; for 1-d arrays it uses convol, which has

ramifications for padding. Important: with the FFT technique, both the signal array1 and the

kernal array2 must be the same size, so you need to pad both.

8.4. Calculating the Fourier Transform of the Autocorrelation Function

We do this using equation 4.3 using the variables appropriate here, that is. . .

P (k) =
1

2J

J−1
∑

j=−J

A(j)e[πi]
kj

J . (8.6)

Here, the frequency ν =
kνsmpl

2J , and for convenience we write P (k) instead of P (
kνsmpl

2J).

Now let’s notice that, with a suitable change of variables in our above equation (2a), you can

easily determine that A(τ) = A(−τ): the autocorrelation function is symmetric in τ . This means

that the imaginary portion of its FT is automatically zero. So, in taking the FT, you don’t even

have to specify that we want just the real part of the result! BUT symmetrizing a digitally sampled

A(τ) is a bit tricky and you need to follow the prescription in §9.

8.5. The FX versus XF methods: Not Entirely Equivalent!!

The correlation theorem says that the FX and XF methods of calculating power spectra should

provide identical results. Not many people realize that this isn’t exactly the case.

– 25 –

The reason is that the theorem is proved for integration to infinity. In fact, we integrate only

over some range of time 2T . This limits the spectral resolution as discussed in §1: the spectrum is

convolved by the FT of the weighting function. The differences between the FX and XF methods

arise only in this realm.

There’s a fundamental difference between applying weighting functions in the two methods of

getting power spectra. In the FX method, you apply the weighting function W (t) to the voltage,

that is before the Fourier transform; and then you “detect” the signal by squaring (really, by

multiplying by its complex conjugate). So the weighting function is also “squared”. Alternatively,

in the XF method, you apply W (t) to the correlation function, which is equivalent to the detected

voltage; the “squaring” has already taken place, so the weighting function does not get “squared”.

Figure 8.1 illustrates the difference.

These applications of W (t) are not equivalent and, furthermore, cannot be made to be equiva-

lent. One strange result is in the XF method, a monochromatic signal produces sinx
x type sidelobes

in the power spectrum, and these go negative. The power spectrum can have negative power!. (Of

course, it’s totally meaningless). This can never happen in the FX method.

In the final analysis—which is too much to discuss here, but the essence is that W (t) < 1 so

“squaring” it means that it gets smaller—this means that, for identical weighting functions W (t),

the leakage is always much smaller with the FX method. You can always make this up by using

a more severe weighting function in the XF method, but you lose a bit more resolution than with

the FX method.

9. COSINE AND SIN TRANSFORMS

The Fourier transform is by its intrinsic definition a complex operation. However, there are

many instances when you need to take a cosine or sin transform. This is straightforward, but it’s

worth spending some space on this because almost everybody gets it wrong.

Suppose you have J datapoints and you wish to take the cosine transform using the FFT

method. That is, you use equation 4.3, which we reproduce here:

E(k) =
1

2J

J−1
∑

j=−J

E(j)e[πi]
kj

J . (9.1)

To take the cosine transform, you need to make sure that the argument E(j) is symmetric in j.

The datapoints D(j) are defined only for j ≥ 0. Defining the symmetric counterpart would seem

to be easy: just define

E(j) = D(j) ;E(−j) = D(j) , (j ≥ 0) . (9.2)

– 26 –

Fig. 8.1.— Comparison of FX and XF methods for a monochromatic signal. νsmpl = 100 Hz and

2T = 0.64 sec. Solid line is XF method, which can have negative sidelobes; dotted line is XF

method with Hanning weighting. Dashed line is FX method. Stars are square-window FFT output

spectral points.

– 27 –

This makes the signal symmetric, so that when you take the digital transform using either the FFT

or a direct transform you have to get a pure cosine transform.

But you immediately run into a problem if you wish to use the most efficient version of the

FFT, for which the number of datapoints needs to be a power of two: the above symmetrization

operation produces an odd number of datapoints. Specifically, if you start with J datapoints, you

end up with 2J − 1 datapoints. You have a “missing datapoint”.

To get around this difficulty, look at equation 5.3. There you see that the missing datapoint has

j = +J and, also, j = −J . Because of the periodic nature of the DFT, these two datapoints must

be equal to the one and only missing datapoint. You need to set this unknown missing datapoint

to a reasonable number. The proper choice for this number is important only insofar as it should

produce no discernible impact on the derived Fourier transform.

You might be tempted to set the missing datapoint equal to zero. However, this is the wrong

choice! The signal may have a nonzero Fourier component at the adjacent datapoints where j =

±(2J − 1). Setting the missing datapoint equal to zero then produces a spike at j = ±(2J), and

this spike produces a channel-to-channel oscillation in the derived Fourier spectrum. The proper

choice for the missing datapoint is the average of the two values at j = ±(2J − 1).

Similar comments apply to doing a sin transform using the FFT, except that you need to

antisymmetrize the signal. NM §12.3 discusses specific routines for cosine and sin transforms, but

IDL does not have these implemented as native procedures.

10. SOME FINAL POINTS

10.1. What’s This Business About Negative Frequencies?

There are some cases in which one can distinguish between negative and positive frequencies.

Specifically, these are cases in which the input to the FT is complex. To be complex, the input

must have both a real and imaginary part: in other words, each sample consists of two numbers,

and these two numbers can be regarded as the real and imaginary parts of a complex number. If

you take AY120B, you will encounter such a case.

More probably, you encounter this case in the movies when you see a rotating wheel. The real

axis is horizontal and the imaginary is vertical. If the wheel moves backwards the true frequency is

negative, forwards is positive: if the wheel appears to move backwards when it is moving forwards,

that’s aliasing! And you wouldn’t know the wheel appears to go backwards without having both

the horizontal and vertical—i.e. real and comples—information.

– 28 –

10.2. For Real Inputs, How Do These Negative Frequencies Enter the Power

Calculation?

In the vast majority of applications, the samples consist only of one number: each time sample

represents a real voltage (or a real number of photons), and there is nothing imaginary—or complex

(mathematically speaking, that is)—about them. But it is perhaps surprising that the FT output

numbers are complex: the imaginary part is not zero. The phase angle of each complex number

represents the phase of that Fourier component with respect to t = 0. For the case of real numbers

as input, the outputted complex numbers have a simplification: the imaginary parts are odd and

the real parts even (in other words, the negative-frequency number is the complex conjugate of the

positive-frequency number).

This means that when you use the complex output spectral numbers to calculate the cor-

responding power numbers (by P (k) = E(k) × [E(k)]∗), negative and positive frequencies have

identical powers. The proper way to combine the powers for the negative and positive frequencies

is simply to add them; but because the numbers are identical, it’s equivalent to simply use twice

the full value of, say, the positive-frequency number. It should be obvious that there is only one

number representing zero frequency, so you should not multiply this by two.

Thus, in the example above in §5.2, after calculating P (k) = E(k) × [E(k)]∗, your power

spectrum is most simply given by the first Pk (k = 0) and twice the next four values of P (k)

(k = 1 → 4).

10.3. A Detail on Normalization and “Going Back and Forth”

In IDL, the FFT is normalized by multiplying the sum by 1
2J , exactly as we’ve done in equation

4.2. Not all FFT routines do the normalization in this way. This way has the advantage that the

scaling of the output is the same as that of the input—in other words, it’s sort of like taking an

average, because we divide by the number of points that contribute to the sum.

As we’ve mentioned in §1, you should know that apart from normalization constants, you can

convert willy-nilly back and forth from frequency to time by applying FT’s in succession. That

is, E(k) = FT (E(j)) and E(j) = FT−(E(k)). Here the superscript minus sign indicates using

the negative complex exponential in the transform, as in equation 0.1b; this is called the inverse

Fourier transform. More graphically, E(j) = FT−[FT (E(j))].

With the normalization used by IDL, the inverse transform must not multiply the sum by 1
2J .

Of course, IDL’s inverse transform does all this correctly. In IDL, you invoke the inverse transform

by using the inverse keyword—see IDL’s help on the fft procedure.

