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Abstract

In this lab we used the radio interferometer located on the roof of Campbell Hall to measure interfer-

ometer baselines and source radii. We utilized Fourier transforms to analyze frequency information of our

time series data. The best fits for our values were determined by minimizing the sum of squared resid-

uals over a range of test values. Our measured baselines were 15.64m±.19m east-west and 1.79m±.09m

north-south and the source radii were .27983◦±.00047◦for the Sun, and .2555◦±.0027◦for the Moon.

1 Introduction

Radio interferometry is useful for many fields, not just astronomy. The measured quantities depend on
multiple variables, which in different fields can be determined very accurately. For geophysics, interferometry
of a source of well known position yields accurate real-time distances between interferometer antenna. We
used a known object, the Sun, Moon, and Cassiopeia A, to determine our interferometer baseline accurately.
In addition, the angular radii of sources can be found accurately from the modulation of the signal. We
found the radii of the Sun and Moon using this method.

2 Observations

2.1 The Interferometer

In this lab we used the radio interferometer, whose schematic is shown in figure 1. There are two antenna,
which measure electric field in the form of voltage, and that voltage signal is passed through a series of band

Figure 1: Simplified schematic of the interferometer used in the lab. The signal measured at the two antenna
are mixed and filtered individually, selecting a 2MHz range of frequencies around 10.027GHz. The two signals
are then mixed together, time integrated, and sampled.
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Figure 2: The time series data of four sources, Cassiopeia A, the Crab Nebula, the Sun, and the Moon.
They are plotted measured amplitude against local sidereal time (LST).

pass filters and mixers which serve to reduce the signal from centered around 10.027GHz to a range from
2MHz to 0Hz. This signal is mixed with the signal from the other antenna, which has undergone the same
transformation. The signal is then time averaged, and the average is recorded by the sampler. What we
are recording is the interference between the two signals, caused by the path length difference traveled by
the signal. That difference changes with time, as the telescope follows a source. There are many different
mathematical interpretations for this information; not only is it the path length difference as a function of
time, but it can bee seen as sampling the sky in frequency or Fourier space. This interpretation is especially
useful, and will be used in section 3.4. In order to follow the sources, the lab has a procedure named follow

that takes an input right ascension and declination, and points at and follows the position as the earth moves.
For the Sun and Moon, follow has special keywords that point to and follow the Sun and Moon, which
have time varying right ascension and declination. The program also records the position of the Sun and the
Moon as it is follow them. The program startchart1 is used to record data from the interferometer, which
records the amplitude and the local sidereal time (LST) for each measurement, which can be converted to
hour angle from the right ascension.
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2.2 Point Sources

We gathered time series data from the interferometer of point source Cassiopeia A. These data are shown in
figure 2. Due to concern that signal to noise was too low for this source, we also collected data of the Crab
Nebula, also shown in figure 2.

2.3 Continuum Sources

We gathered time series data from interferometer of the Sun and Moon, two continuum sources. These data
are shown in 2. The Sun data have very high signal to noise; both the fringe and modulation are clearly
visible without filtering.

3 Data Analysis

3.1 Fourier Analysis

The time series data contain a large amount of information in frequency space, which can be obtained from
a Fourier transform. Not all of the data taken were usable because of pointing limits or occulting buildings,
and the ranges of the data used are shown in table 1. The frequency space data are shown in figure 3 for all
four sources. In the point sources the fringe frequency is given by equation 14 in the lab manual, which is
ff =

[

Bew

λ cos δ
]

coshs,0 −
[

Bns

λ sinL cos δ
]

sinhs,0. Assuming that Bew >> Bns, and that cos δ is of order
unity, at zenith these terms for a baseline of around 20 m and wavelength 3 cm, are about 600 cycles per
radian. Converting to cycles per second knowing that there are 24× 60× 60 seconds in 2π radians, the peak
is at 40 mHz, which is the order of magnitude of where we see peaks in all four Fourier transforms. We know
now from this equation that this is the important information encoded in these data, so we can filter out
the other frequencies, which are just noise. Anything past the maximum fringe frequency is not contributed
by the fringe, and can be zeroed. This break can be clearly seen in the Sun data, where there is an abrupt
drop in power after the maximum fringe frequency. Zeroing all frequencies after 40 mHz, and also zeroing
the dc contribution near zero, we inverse Fourier transform and get filtered data; an example is shown in
figure 4 for the Moon. Before filtering the modulation due to being a continuum source is not visible, but
after filtering it is easy to see.

Table 1: Ranges of the usable data

Source Begin (HA) End (HA)
Cassiopeia A -4 4
Crab Nebula -3 3

Sun -5.2 6
Moon -4 4

3.2 Baselines from Least-Squares Analysis

The amplitude of the point sources can be expressed as a linear combination of two terms that are known
functions of time, Qew and Qns. That equation is

F (hs) = A cos (2πΩ) +B sin (2πΩ) (1)

Ω(Qew, Qns, hs) = Qew sinhs +Qns coshs (2)

Qew =

[

Bew

λ
cos δ

]

Qns =

[

Bns

λ
sinL cos δ

]

(3)

We can use least squares to determine the coefficients in equation 1, if we assume a value of Qew and Qns.
From the best fit coefficients, we can find the residuals, as described in the least squares fitting handout.

3



Cassiopeia A

0 10 20 30 40 50
Frequency (mHz)

0

2•10−13

4•10−13

6•10−13

8•10−13

1•10−12

P
ow

er

Crab Nebula

0 10 20 30 40 50
Frequency (mHz)

0

2•10−14

4•10−14

6•10−14

8•10−14

1•10−13

P
ow

er

Sun

0 10 20 30 40 50
Frequency (mHz)

0

1•10−9

2•10−9

3•10−9

4•10−9

5•10−9

P
ow

er

Moon

0 10 20 30 40 50
Frequency (mHz)

0

2•10−12

4•10−12

6•10−12

8•10−12

1•10−11

P
ow

er

Figure 3: The time series data of four sources, transformed into frequency space via Fourier transforms. The
entire data range were not used for each transform, since some of the time the sources were out of range or
blocked. The point sources both have peaks around 20 mHz, where the fringe frequency is at maximum. The
continuum sources have a modulating envelope clearly visible, due to their extended nature. The measured
data are plotted in gray, and smoothed data overplotted in black.
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Unfiltered Moon Time Series
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Fourier Filtered Moon Time Series
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Figure 4: The Moon time series was Fourier transformed, and then all frequencies not between .01 Hz and
.04 Hz were zeroed. The filtered Fourier data were inverse Fourier transformed into real space. This removed
much noise, the modulating function of the continuum source is now clearly visible.

Table 2: Baseline fits

Source Bew Bns Covariance
Cassiopeia A 15.64m±.19m 1.79m±.09m .201

Sun 15.619m±.062m 1.624m±.011m .321
Moon 15.59m±.11m 1.661m±.059m -.807

From the sum of squared residuals, we can compare the fit of different Q values. We know the declination
of our source, and we know the frequency of the signal and thus the λ. Therefore, if we find the best fit Q
values, we know, the best fit baseline. This fitting is done first assuming the baseline north-south (Qns) is
zero, and iterating over the value of Qew. This is done for both Cassiopeia A, and for the Sun data around
zenith, shown in figure 5 and 6 respectively. The high signal to noise of the Sun data are apparent, as the
minimum is very near zero, while in Cassiopeia A the minimum is much farther from zero. relative to the
median value.
There are two dimension to the baseline of the interferometer, north-south and east-west. Thus, an array
of baseline values in both dimension must be taken to find the global minimum. This is done by picking a
Qew value, and then calculating a range of Qns values, and doing this for a range of Qew. This is two nested
loops, and produces a two dimensional array of sum of squared residuals. The array for Cassiopeia is shown
in figure 7, the Sun in figure 8, and the Moon in figure 9. The minimum values are shown in table 2. The
variances were calculated using the curvature matrix found by Taylor expanding around the minimum. The
Taylor expansion around the minimum gives the following formula for the sum of squared residuals:

∆S2 =
1

2

∂2S2

∂Q2
ew

∆Q2
ew +

∂2S2

∂Qew∂Qns
∆Qew∆Qns +

1

2

∂2S2

∂Q2
ns

∆Q2
ns (4)

This gives the following curvature matrix:
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Least−Squares Fitting Cassiopeia for Bew when Bns=0
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Figure 5: The sum of squared residuals for fitting Bew to Cassiopeia A, with Bns held at 0. Lambda is 3
cm in this evaluation, determined from the schematic in figure 1. The minimum shown here is zoomed for
clarity, the residuals are very nearly constant for all guess Bew values, due to low signal to noise.

Least−Squares Fitting Sun around Zenith for Bew when Bns=0
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Figure 6: Demonstration of the fitting code with high signal to noise data, in this case the sun data. The
global minimum is deeper than any other local minimum, and the residuals vary over a large range.
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Figure 7: The two dimensional array of sum of squares residuals found from least squares fitting various
values of Bew and Bns for Cassiopeia A. The darker color indicates smaller value. The right image is zoomed
ten times on the minimum. The low signal to noise is apparent in the tubulent scattering of the minima
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Figure 8: The two dimensional array of sum of squares residuals found from least squares fitting various
values of Bew and Bns the Sun. The darker color indicates smaller value. The right image is zoomed one
hundred times on the minimum. The high signal to noise is apparent in the residuals, with a singular well
defined minimum.
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Sum of Squared Residuals for Moon
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Figure 9: Two dimensional array of sum of squares residuals found from least squares fitting various values
of Bew and Bns the Moon. The darker color indicates smaller value. The right image is zoomed one hundred
times on the minimum. The decent signal to noise can be seen in the residuals. There are a group of minima
and a diffraction like pattern, but they are well grouped, unlike Cassiopeia A.

[α] =







1

2

∂2S2

∂Q2
ew

∂2S2

∂Qew∂Qns

∂2S2

∂Qew∂Qns

1

2

∂2S2

∂Q2
ns






(5)

The variances are the diagonal elements of the inverse of the curvature matrix, and the covariances are the
off-diagonal elements. The square root of the variance is used to give the error of the value. The error
corresponds to the expected range of the standard deviation of a random variable. For our purposes, the
variance tells us that if we ran the same experiment many times, the error is the range over which we would
expect the found value to occur. Since we only have one experiment, we say that the true value is within
this range of our found value. The variances of the two coefficients depend on each other, by a measured
called the covariance. The normalized covariance is given by the formula, where XXI is the inverse of the
curvature matrix:

ncovik =
XXIik√

XXIii XXIkk
. (6)

3.3 Source Diameter from Real Space

The Sun and Moon are continuum sources. The projected sine wave of the interferometer has a wavelength
that is significant compared to the angular size of the Sun and Moon, and thus the received power is an
integral over the area of the Sun and Moon. The different parts of the continuum source interfere with
each other, and this interference cause the Sun and Moon to look like a point source, modulated by some
modulating function, which is a function of radius and fringe frequency. The modulating function depends
on the intensity distribution of the source, and if we assume uniformly bright circular Sun and Moon, the
modulating function, as derived in the lab manual, can be calculated analytically with the function:

MFtheory ≈ δh

n=+N
∑

n=−N

[

1−
( n

N

)2
]1/2

cos

(

2πffRn

N

)

(7)

8



Sum of Squared Residuals, Sun

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Radius (degrees)

0

10

20

30

40
Real Data and Best Fit, Sun

−6 −4 −2 0 2 4 6
Hour Angle

0

2

4

6

8

10

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 10: On the left, the sum of squared residuals comparing the Sun time series and the modulating
function for various radii. On the right, the Sun time series in gray and the best fit modulating function in
black. The global minimum is only slightly deeper than other minima, and the fit is inexact.
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Figure 11: On the left, the sum of squared residuals comparing the Moon time series and the modulating
function for various radii. On the right, the Moon time series in gray and the best fit modulating function
in black.
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Figure 12: Fourier transform of the Sun and Moon data, and the best fit modulating function. Only the
first 5 zeros are used, since the next zeros occur past the maximum fringe frequency.

The modulating function is a function of just fringe frequency and radius. Fringe frequency can be expressed
as a function of just time once Q is known, so the Modulating function can be expressed as a function of time,
and compared to our time series. With envelope_least_squares I calculated the modulating function for a
given radius, then multiplied it by the best fit point source function found with least_squares to generate
theoretical time series data. These theoretical data were compared to the real time series data. There was
difficulty initially because the fitting procedure is not accurate enough over the full range of the time series,
since the modulating function introduces 180◦phase shifts to parts of the data. To compensate, the two
data sets were root mean square averaged over a range of 64 data points. These two averaged functions
were subtracted, squared, totaled and then square rooted to obtain the sum of squared residuals for that
particular radius value. This process was repeated for a range of radius values, and the sum of squared
residuals are shown in figure 10 for the Sun, and figure 11 for the Moon, along with the best fit. The best
fit radii are shown in table 3. The variances were calculated by obtaining the curvature matrix by Taylor
expansion around the minimum.

Table 3: Radius fitting Continuum Sources

Source Real Space Fourier Space
Sun .269◦±.02◦ .27983◦±.00047◦

Moon .257◦±.02◦ .2555◦±.0027◦

3.4 Source Diameter from Fourier Space

The fit for the modulating function is not very good, and there are issues with the found baseline of 15.5
meters, since we know that the baseline is actually 17 meters, a discrepancy which will be addressed in
section 4.1. The fit for the source diameter depends on the value of the baseline, so an incorrect baseline
would lead to an incorrect radius. However, it is possible to deduce the radius without needing the baseline,
because the modulating function depends on the combined fringe frequency times radius, and the data after
a Fourier transform are in frequency space. We can use the envelope of the Fourier transform, and compare
it to the envelope of the modulating function in frequency space. Both envelopes have distinct zeros. The
zeros of the theoretical modulating function, which has no noise, is found by finding the indexes where the
function goes from positive to negative. For the data in frequency space, the data are root mean square
smoothed, and then the data scanned, and all minima over the range of 128 data points are saved as the
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zeros of the Fourier transform. Only the first 4 zeros are good, because after that the zeros occur past the
maximum fringe frequency. We now have two sets of zeros, one occuring at specific ff × R values, and one
occuring at specific ff values. The following matrix equation can be constructed, and least-squares fitted:







(ff )observed
(ff )observed

...







[

R
]

=







(ff ×R)theory
(ff ×R)theory

...






(8)

This matrix solving method allows for the finding of variances through the curvature matrix, and the results
and errors are shown in table 3.

4 Interpretation

4.1 Baseline Measurements
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Figure 13: The strength of fit for generated data using the equation for fringe, random position, and random
coeffients on the left. On the right is the strength of fit for Sun data around zenith. The gray are the data,
and the black are the best fit.

The length of the baseline is problematic. All of the least-squares fitting of the fringes yielded a result
of about 15.5 m, but the actual distance is about 17 m, as told by the professor. Much care was taken to
reduce all possible error in the least squares fitting, and the most perplexing element was the strength of
the fit. The procedure was tested on both the Sun data, which have very high signal to noise, and with
generated data using the given equation for fringe frequency. Shown in figure 13 is the best fit calculated
by the procedure, both for generated data, and for the Sun data. The strength of the fit is very high, as
shown visually in the fit. The strength of the fit implies that the found Q is correct. However, the Q found
is too low, and the two possible other sources of error are the declination and the wavelength. For the Sun,
the declination is near zero, and its contribution is minimal, so it is unlikely that is the source of error. The
wavelength would need to be 10% greater to account for the error, but 3 cm is found directly from the setup.
It is possible that the hour angles of the Sun data are not properly interpolated, because follow records
LST less frequently than startchart1, but the analysis of the Cassiopeia A data also has a minimum at
15.5 m, which has LST recorded by startchart1. I was unable to determine the source of this error in the
calculation, and am at a loss of more places to look for error.
This error is real, not just on faith that the baseline is 17 m. The continuum source calculation in real space
use the baseline value, and substituting in 17 m give a better fit, shown in figure 14. The global minimum is
both more distinct from the other mimima, and the calculated variance is half the variance calculated with
15.5 m. The calculations of fringe frequency and modulating functions are independent of the calculations
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Figure 14: On the left, the sum of squared residuals comparing the Sun time series and the modulating
function for various radii, assuming Bew = 17 m. On the right, the Sun time series in gray and the best fit
modulating function in black. The global minimum is much deeper than all local minimum, and the best fit
appears better.

in determining the baseline, and free of that calculation’s error. For this reason I calculated the continuum
source radii in Fourier space as well as real space, because the Fourier space calculation is independent of
the baseline calculation altogether. The results of the Fourier space calculation have a smaller error, and are
within the error of the real space. The baseline measurements have systematic error of an unknown source,
but I was able to isolate that error to that calculation alone, and derive the other quantities independently
and accurately.

5 Group Contributions

Most of the work of this lab was in the analysis and coding, which was all done individually. Andrew Halle
took the data for Cassiopeia A, the Sun, and the Moon, I took data for the Crab Nebula

6 Conclusion

Interferometry is a tool for astrophysics, and a tool for other fields like geophysics. We were able to determine
the distance between two telescopes accurately for a known point source, though there was some issues with
final result, as it contrasted with the known value, with a discrepancy outside of the calculated error.
However, we were able to independently derive the radii of the Sun and Moon, without the error from the
baseline measurement. Solving in frequency space, we used the Fourier transform of the data to determine
the radii without needing to know the fringe frequency as a function of hour angle. Solving in real space,
we used the found baseline values to calculate the radii as a proof of concept. Our measured baselines
were 15.64m±.19m east-west and 1.79m±.09m north-south and the source radii were .27983◦±.00047◦for
the Sun, and .2555◦±.0027◦for the Moon. The tools we learned are used by larger and more precise arrays
and telescopes to calculate the movement of tectonic plates, or the sizes even smaller astrophysical sources.
The skills of analyzing the frequency domain, least squares fitting over multiple parameters, and calculating
errors are skills that we will continue to use in both our astrophysics careers, or any scientific feild we enter.
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7 Software

All the programs used in this lab are in /home/willieross/Astro121/week6/ and there are several necessary
data files, which are also located in that directory, cas_a_ra_dec.dat cas_a_data.sav crab_ra_dec.dat

crab_nebula_data.dat sun_all_day_data.dat sun_all_day_follow.dat moon_all_night_follow.dat

moon_all_night.dat. The programs used in the lab are listed below with their documentation:

----- Documentation for ./generate_powerspec.pro -----

NAME:

generate_powerspec

PURPOSE:

loads data file, arranges hour angle in correct order,

shows power spectrum and the results of fourier filtering

EXPLANATION:

The data are loaded and hour angle is made continuous.

The user is prompted foring sectioning the data

to allow removal of bad data, and then the data are

fourier transformed, smoothed, and then filtered,

removing areas away from the fringe frequency, and then

converted back to real space

CALLING SEQUENCE:

generate_powerspec, name, ha, tseries,fft,f

INPUTS:

name: name of the oject

OPTIONAL INPUTS:

KEYWORD PARAMETERS:

OUTPUTS:

tseries: output time series, after filtering and shortening

ha: hour angle of the filtered time series

OPTIONAL OUTUTS:

fft: value of fourier transform

f: x values for fft

EXAMPLES:

generate_powerspec, ’sun’, ha, tseries

REVISION HISTORY:

written and documented 3/26 by Timothy Ross

----- Documentation for ./least_squares.pro -----

NAME:

least_squares_baseline_main

PURPOSE:

least squares fits the interferometer data to find

the best fit baseline
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EXPLANATION:

Loads the data choosen by the user. Those data are filtered

if desired. A first degree polynomial is fitted and removed

data, zeroing it. From the guessed baselines, and input size

and scale parameters, an array of Q valuiies to test is

generated. The data are then least-squares fitted by matrix

methods to determine the residuals for each Q value. The

residuals are formed into a grid for display purposes, and

the minimum is subtracted, and then displayed with the axes

displaying the baseline values. The best fit baseline is

calculated from the Q at minimum residual and diplayed. The

smallest residual value is found and then the fit from that

residual is recalculated. If desired, that results are saved

CALLING SEQUENCE:

least_squares_baseline_main, size, name,image,b_x,s_y,$

s_min,t_prime,tseries,ha_radians,dec_radians, short=short,$

scale_mult=scale_mult, save=save,fourier=fourier,$

baseline=baseline

INPUTS:

size: 2 element array for x size and y size

name: which data to call. options are ’cas_1’, ’crab’,

’sun’, ’moon’, ’fake’

OPTIONAL INPUTS

none

KEYWORD PARAMETERS

short: if set, uses only a range of the data

save: if set, the image is saved to file

scale_mult: how far around the initall guess to check

fourier: if set, fourier filters the data. It is transformed

to fourier space, a section in the range

[-outside,-inside] and [inside,outside] is

transformed back into real space

baseline: The initial baseline value to test around

OUTPUTS:

image: 2D image of the values

b_x: slice of the east-west baseline at minimum

s_y: values of the slice

s_min: minimum value of the residual

t_prime: reconstructed best fit

OPTIONAL OUTUTS:

EXAMPLES:

least_squares_baseline_main, [128,128],’fake’,$

image,b_x,s_y,s_min,t_prime,short=[-5,5],save=’test.dat’

REVISION HISTORY:

written and documented 3/26 by Timothy Ross
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----- Documentation for ./covariance.pro -----

NAME:

covariance

PURPOSE:

Takes a 2d array of residuals and finds the

variance of the derived coeffiencts, and

their associated covariance

EXPLANATION:

loads either a full save file with image, residuals

and grid size, or takes them as input, and takes

the three second derivatives, and uses them to

calculate the curvature matrix, and then the

variance and covariance

CALLING SEQUENCE:

covariance, image, s_min, d_ew,d_ns, save=save, var_vec, ncov

INPUTS:

image: the 2d array of sum of squares residuals

s_min: the value of the minimum

d_ew: grid scale of q_ew

d_ns: grid scale of q_ns

OPTIONAL INPUTS

save: save file including all the inputs

KEYWORD PARAMETERS

OUTPUTS:

var_ver: vector containing variances

ncov: matrix containing covariances

OPTIONAL OUTUTS:

EXAMPLES:

covariance, image, s_min,d_ew,d_ns,save=’cas_1_64_64.sav’

finds the covariance of the fit from the file

REVISION HISTORY:

written and documented 3/26 by Timothy Ross

----- Documentation for ./envelope_least_squares.pro -----

NAME:

envelope_least_squares

PURPOSE:
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takes time series data, uses the baselines found earlier,

and calculates the modulating function, and fits it with

least squares of a range of radii to determine best fit

radii, also giving variance on the radius

EXPLANATION:

The fringe frequency is calculated from the derived baseline

and used to calculate the modulating function for a range of

radii and the found modulating function is multiplied by the

best fit point source function, to give a theoritical function.

The theoritical and observed functions are squared and averaged

to get their envelopes, and then the residuals between the two

smoothed functions is found for each radius value, to dtermine

the best fit radius. The variance of the best fit value is found

from the derivatives around the minimum.

CALLING SEQUENCE:

pro envelope_least_squares, tseries, ha_radians, dec_radians,$

t_prime, baseline, radius,variance=variance, size=size,$

scale=scale,radius_initial=radius_initial ,output=output

INPUTS:

tseries: time series data of sun or moon

ha_radians: radian values of hour angle for each tseries value

dec_radians: array of declinations, same length as tseries, in

radians

t_prime: best fit point-source function from equation 12

baseline: values of baseline, [B_ew,B_ns]

OPTIONAL INPUTS:

KEYWORD PARAMETERS:

size: the amount of values to iterate over, default 512

scale: the range searched over, from r-r*scale to r+r*scale,

default 1

radius_initial: the value of radius to search around, default

.28 degrees

output: string containing ps filename to output best fit plot

OUTPUTS:

radius: the best fit radius of the object, in degrees

OPTIONAL OUTUTS:

variance: the variance of the found radius

EXAMPLES:

envelope_least_squares, tseries, ha_radians, dec_radians, $

t_prime, baseline, radius,variance=variance

REVISION HISTORY:

written and documented 4/2 by Timothy Ross

----- Documentation for ./envelope.pro -----

16



NAME:

envelope

PURPOSE:

takes time series data of the sun or moon, and from

the modulating envelope in fourier space, determines

the angular diameter

EXPLANATION:

The data are transformed to frequency space via Fourier

Transform, where the modulating envelope is a function of

frequency. The modulationg function is calculated numerically

in terms of fringe frequency times radius. The mun data exist

in fringe frequency space, and so after smoothing, zeros/minima

are found in terms of fringe frequency. Least squares are used

to determine the best fit R that reduces the sum of square

residuals between the zeros of the modulating function and

the zeros of the data. The curvature matrix from the least

squares is used to get the variance of the radius

CALLING SEQUENCE:

envelope, name, radius, variance=variance

INPUTS:

image: the source to analyze, either ’sun’ or ’moon’

OPTIONAL INPUTS:

KEYWORD PARAMETERS:

OUTPUTS:

radius: the best fit radius of the object, in degrees

OPTIONAL OUTUTS:

variance: the variance of the fit

EXAMPLES:

envelope, ’sun’, radius, variance=variance

finds the radius of the sun

REVISION HISTORY:

written and documented 3/26 by Timothy Ross

----- Documentation for ./fake_data.pro -----

NAME:

fake_data

PURPOSE:

creates fake time series data from the equation 12

in the lab manual. The data have noise and random ra, dec,

and are saved to the files ’fake_data.dat’ and
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’fake_ra_dec.dat’

EXPLANATION:

Data is generated using the equation 12, then saved

CALLING SEQUENCE:

fake_data, b_ew, b_ns

INPUTS:

b_ew: the east-west baseline of the data

b_ns: the north-south baseline of the data

OPTIONAL INPUTS:

KEYWORD PARAMETERS:

OUTPUTS:

OPTIONAL OUTUTS:

EXAMPLES:

fake_data, 15.5, 1.7

generates data that a source at random ra and dec

would produce for a inferometer of baselines 15.5

and 1.7

REVISION HISTORY:

written and documented 3/26 by Timothy Ross
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