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Abstract

This lab was focused on understanding the many uses of the interferometer. It was used
to record fringe data from both a point source Cas A and extended sources, the Sun and
Moon. The main objectives of this lab were to determine the baseline of the interferometer
with high precision as well as to determine the angular diameter of the Sun and Moon. We
were unable to determine the diameter of the Moon, but the Sun’s diameter was calculated
to be roughly .47 degrees, fairly close to the known .50 degrees.

1. Introduction

Interferometers are very useful instruments in astronomy. Superimposed waves from sources in
space naturally create interference patterns as they construct and destruct. Interferometry takes
requires using two telescopes which allows researchers to extrapolate more specific information
than a singular telescope could. In this lab we explore the usefulness of such a set up by analyzing
the unique fringe patterns generated by interferometers, and using this analysis to make further
conclusions regarding the emitting bodies which we measure.

2. Interferometer

2.1 Theory

Interferometers utilize multiple telescopes. When both telescopes are pointed at the same
source, there is a slight time difference between the time one dish receives a signal compared to
the other, and this difference is based geometrically on the angle of the source and the distance
between the two dishes. This geometric time difference is known as τg. However, this is not the
only difference that will affect the data as it is recorded. Another delay, τcable, comes from any
difference in the distance between the two dishes and the sampler. Thus, the total difference is

τtotal = τg(ha) + τcable (1)

The time difference τg is a function of hour angle. This is because the delay depends on the
position of the source in the sky, and sources change relative positions in the sky as Earth rotates.
At higher angles, the time difference is the least. There is no time difference if the object being
observed is directly overhead of the two dishes. Logically, the time difference is greatest when
objects are at lower levels, as the distance between the two dishes has more impact on the data.
As such, τg is accurately represented as function of hour angle.
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Figure 1: Diagram of the interferometer system.

The signals received by the two dishes are combined to form a multiplying interferometer.
This two signals, E1 and E2, and sent through a mixer and multiplied, and their product is shown
below:

(E1 + E2)
2 = E2

1 + E2
2 + 2E1E2 (2)

The most relevant data is the product E1E2 of the signals, so the self-products of the signals E2
1

and E2
2 are subtracted to isolate this product for analysis.

An important factor in the signal which is recorded is the baseline between the two dishes,
B. This distance is a vector, which can be split into two components based on direction. Bew

represents the component of the baseline that aligns in the east-west direction, and Bns represents
the other component which aligns in the north-south west direction. These two components have
a reliance on many factors, and their relationship is shown below.

τg,ew(ha) = [
Bew

c
cos δ] sinha (3)

τg,ns(ha) = [
Bns

c
sinL cos δ] cosha − [

Bns

c
cosL sin δ] (4)

In this expression, hs is the hour angle, L is the latitude on Earth at which the telescopes are
located, and δ is the declination of the source in the sky.

The second term in equation 4 is not dependent on the hour angle, so it can be moved to the
non-time dependent component in the cable delay. The two hour angle dependent components
can be combined into one geometrically determined delay, τ ′g, and the remaining components form
τ ′c as shown in equations 5 and 6 below.

τ ′c = τc − [
Bns

c
cosL sin δ] (5)

τ ′g(hs) = [
Bew

c
cos δ] sinhs + [

Bns

c
sinL cos δ] coshs (6)
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2.1 Fringe

Factoring in the effect of this time delay creates the fringe. The equations that represent the
voltages of the two sources are

E1(t) = cos(2πνt) (7)

E2(t) = cos(2πν[t+ τtot]) (8)

Upon multiplying the two as in equation 2, we can use various trigonometric identities to
change the expression to something vastly more useful. First it can be converted from multiplied
sinusoids into a single sinusoid that features a product of two variables inside it. Another well
known identity allows us to convert the singular cosine function to the following equation, :

F (hs) = cos(2πντc) cos(2πντ ′g)− sin(2πντc) sin(2πντ ′g) (9)

This equation is most useful because it is in terms of one variable, after the assumption that
the right ascension is well known enough to determine hs which allows it to be included in the τg
term. Since cos(2πντc) and sin(2πντc) are constants, they can be replaced with arbitrary A and
B and solved with least squares. This yields the final fringe equation:

F (hs) = A cos(2πντ ′g) +B sin(2πντ ′g) (10)

3. Data

3.1 Cas A

We chose to observe the object Cas A as our point source. The object is located with right
ascension 23h23m24s and a declination of +58◦48.9′ . Using the rotation matrix we created for the
previous lab, we were able to convert these galactic coordinates to azimuth and altitude coordinates
for use here on Earth. After doing so, we had to determine when Cas A rose and set over the
horizon. This was done by calculating at what time the altitude of Cas A was zero, and adjusting
to the values to see if its altitude was increasing or decreasing. We determined it rose at about
6am, and around 6pm it would set behind Evans so we could no longer take data. All in all, we
recorded a good 12 hours of data for use. After collecting the data, some basic analysis was done,
including a Fourier transform to frequency space and computing a power spectrum.

3.2 The Sun

The Sun, unlike Cas A, is not a point source as it subtends a visible angle in the sky. As
an extended source, the Sun’s fringe frequency and amplitude changes with time. Likewise, its
declination is not constant since it is close enough to Earth to have noticeable changes in relative
motion. Our procedure for capturing a days’ worth of data for the Sun was essentially identical to
that of our procedure with Cas A. We used the isun procedure and followed the sun for 12 hours.
Below are the raw voltage data, the transformed voltage spectrum, and the power spectrum.

The fringe data shows very clear patterns as the sun nears the horizon, which is to be expected
since the the phase delay is greatest when objects are near the horizon. In regards to the power
spectrum, there are multiple clear peaks
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Figure 2: Cas A raw voltage data, voltage spectrum, and power spectrum.
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Figure 3: Raw voltage data, voltage spectrum, and power spectrum for the Sun.

3.3 The Moon

Observation of the moon unsurprisingly occurred at night while the sun was down to ensure
the most direct unobstructed signal could be obtained. The imoon procedure allowed us to follow
the moon and account for its even greater relative motion since it orbits us. Below are the raw
voltage data, the transformed voltage spectrum, and the power spectrum.

Unfortunately, our data for the Moon was very poor. The raw data didn’t oscillate about zero
and there were no indications of sinusoidal fringe patterns like the Sun. In an attempt to correct
this, I tried smoothing the raw data and then subtracting that from the original data to center it
about 0. This worked in centering it, but made the data pretty unusable. As a result, in the later
sections asking for the diameters of the Sun and Moon, only the Sun is covered due to difficulty
getting a result of any meaning out of the Moon data.
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Figure 4: The voltage spectrum and power spectrum of the Sun.

4. Local Fringe Frequency

The final result for the fringe amplitude is a function of hs as seen below:

F (hs) = A cos(2πντ ′g) +B sin(2πντ ′g) (11)

However, upon closer inspection and realization that the hs term lies inside τ ′g, it becomes
clear that the function of hs is not linear but sinusoidal since it lies in both a sin and cos. This
frequency at which they oscillate is know as the local fringe frequency, ff .

sin(hs) = sin(hs,0) + ∆hs
d sin(hs)

dh
|hs sin(hs,0) + ∆hs cos(hs,0) (12)

We take the Taylor expansion of sinhs about a certain hour angle hs,0, and the second term
provides the behavior of this function about this hour angle. The fringe amplitude F (hs) changes
with ff∆hs, with ff shown below.

ff = [
Bew

λ
cos δ] coshs,0 − [

Bns

λ
sinL cos δ] sinhs,0 (13)

5. Determining B cos δ

5.1 One Dimension

Due to the orientation of our interferometer set up, the baseline is almost entirely east-west
oriented. As such for a simple sanity check we can approximate Bns = 0 and proceed with a
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simple, one dimension brute force approach to a least square fit. This was done by trying many
different values for Qew over a range, and then finding the minimum. The results can be seen
below. The number of Qew samples was 250, and the baseline was approximated at 19.81 m after
locating the minimum residual value.
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Figure 5: Square residuals for one dimensional brute force analysis.

5.2 Two Dimensions

The two dimensional approach to least squares brute force method is a bit more involved than
the one dimensional method. The equations for the fringe amplitude and ντ ′g are below

F (hs) = A cos(2πντ ′g) +B sin(2πντ ′g) (14)

ντ ′g(Bew, Bns, δ, hs) = [
Bew

λ
cos δ] sinhs + [

Bns

λ
sinL cos δ] coshs (15)

In order to fit for A and B, we start by taking a set of guess values for Qew =
[
Bew

λ
cos δ

]
and

Qns =
[
Bns

λ
sinL cos δ

]
. For each set of values of Qew and Qns, we take the least squares fit of

the fringe amplitude, and obtain A and B. This gives us a set of fringe amplitudes that we may
compare to our data. The calculated values are below.

A = 1.302 · 10−07

B = 6.116 · 10−08
(16)

5.1 Uncertainties

We may compare our predicted fringe amplitude to our data and obtain the deviation from
our fit. The values for Qew and Qns for which this total deviation is smallest, i.e. the residual
sum of squares RSS, are our best fit values for Qew and Qns. Below we have plotted a plot of our
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Figure 6: Residual sum of squares

sum of square residuals around the global minimum. The initial calculations were performed on
Qew and Qns to obtain the global minimum. We then converted these Q values to their respective
baseline values, using the following equations:

Bew =
Qewλ

cos δ

Bns =
Qnsλ

sinL cos δ

(17)

Here, δ = 22.024321 and λ = c
9.9GHz

, where c is the speed of light in a vacuum. We obtain the
values Bew = 15.10m and Bns = 1.59m.
We then proceeded to find the uncertainty of our best fit values. In order to derive the uncertainties
for our best-fit guess values, we solve for the curvature matrix α. This process required quite a
few steps, for brevity the results are below:

α =

[
1.426 · 10−05 7.652 · 10−06

7.652 · 10−06 1.716 · 10−05

]
(18)

In order to get the uncertainties for best-fit values for Qns and Qew, we take the inverse of our
curvature matrix in order to retrieve our covariance matrix [α]−1.

[α]−1 =

[
92218 −41121
−41121 76614

]
(19)

Using these matrices we can find the uncertainties in Q, which when converted to baseline values
yield:

∆Bns = 0.145m

∆Bew = 0.107m
(20)
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6. Determining the Diameter of the Sun

As the sun/moon moves across the sky while the Earth rotates, they move through a fringe
pattern in order to produce a fringe response as a function of time R(hs). So far, we have been
working with a point source, so we have been able to take R(hs) = F (hs) from equation ??.
The sun and moon are both extended sources, so it is important to obtain our fringe response
by integrating over the source intensity. Ultimately, the interferometer response, R(hs), can be
expressed as so:

R(hs) = F (hs)︸ ︷︷ ︸
Point−source Fringe

×
∫
I(∆h) cos(2πff∆h) d∆h︸ ︷︷ ︸

Fringe Modulator

(21)

We can utilize this modulating function to our own advantage. In particular, we can use it
to modulate a uniformly bright disk and calculate the angular diameter of it. A uniformly bright
disk with radius R is mathematically represented as:

I(∆h) =
(R2 −∆h2)1/2

R
(22)

We can use this as the point source fringe and integrating. However, instead of straining over
such a complex integral, we choose to take a more rigorous numerical approach , approximating
the integral as:

MFtheory ≈ δh
n=+N∑
n=−N

[
1−

( n
N

)2]1/2
cos

(
2πffRn

N

)
(23)

Using this summation, I summed over a thousand values of n. My approach toward finding
the correct radius was first plotting the raw fringe data from the Sun against hour angle. Next, I
created a ff based on the data from the Sun structure. I ran this through the MFtheory sum and
arrived at a cosine function with the only remaining variable being R. I overplotted the curve this
cosine function produced on the solar fringe. From there, I simply tweaked the R value until the
zeros of the cosine function aligned with those of the fringe amplitudes. The value of R I that
had the best fit with the fringe data was .233◦, which, when doubled, gives an angular diameter
of .466◦. This is fairly close to the known result of about .50◦. The plot showing the overlap of
the MFtheory with R = .233 and the solar fringe data is shown below.

7. Code

All of the following files can be found under the directory samhjohnson/Dekstop/LAB3.

cas a.pro

Analyzes the Cas A data and creates plots of the raw data as well as the voltage and power
spectra.
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Figure 7: Raw sun data plotted against hour angle with the best fit MF overplotted.

sun p.pro

Analyzes the Sun data and creates plots of the raw data as well as the voltage and power
spectra.

sun r.pro

Generates a modulating function and plots its over the raw sun data to create a best fit for
the Sun’s radius.

moon r.pro

Analyzes the Moon data and creates plots of the raw data as well as the voltage and power
spectra.

baseline.pro

Creates three procedures: oned, q, and uncertainty. Oned does the one dimensional residuals,
q does the two dimensions residuals, and uncertainty calculates the uncertainties.
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