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ABSTRACT

The aims of this investigation were to find values for the components of the

Campbell Hall interferometer baseline using least squares fitting of point source,

(the Orion Nebula), and extended source, (the Sun and Moon) data, as well

as values for the diameters of the Sun and Moon. The least squares fit on the

Sun data gave a value for the East-West component of the baseline of 16.2m.

The least squares fit of the point source data gave a value for the East-West

component of the baseline of 15.4m. The 2D fit of the point source data did not

give accurate results, the same as with the diameters of the Sun and Moon.
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1. Introduction and Background

Radio interferometry is the basis for most radio astronomy today. For this investigation

we used an interferometer operating at about 12GHz. It consists of two telescope dishes that

each receive a signal, these are then multiplied together using a mixer. The baseline, B, is

the distance between these two dishes, this is made up of two components, Bew ≈ 20m, (the

East-west component), and Bns ≈ 1m, (the North-South component). The output of the

interferometer is a sine-like signal known as the fringe, this contains information about the

source in its frequency, amplitude and phase. With our baseline, we get a fringe spacing of

approximately 5’, since fringe spacing = λ
B

, where λ is the wavelength of the signal.

For this investigation we looked at a point source, the Orion Nebula, with ra = 05h35m17.3s, dec =

−0.5◦23′28′′, as well as two extended sources: the Sun and Moon. The Orion nebula is a

region where hot stars have produced ionised gas, this emits radiation known as free-free

radiation, caused by electrons deflecting off protons. On the other hand, the Moon, unlike

popular belief, does not shine due to reflected light from the Sun, rather it emits blackbody

radiation from its surface, which is heated by the Sun. Using the fringe of a horizon-to-

horizon measurement of the Sun or Moon, we can infer their diameters and baselines, Bew

and Bns.

2. Experiments and Observations

2.1. Point Source Observation

First we did a measurement of the Sun for one hour to ensure the system was working

properly. Then we did a horizon-to-horizon measurement of the point source. We had to

precess the coordinates to the current equinox using the IDL procedure precess to get the

correct ra’s.

2.2. Sun and Moon Observation

Next we took a horizon-to-horizon measurement of the Sun. Unfortunately, we calcu-

lated the duration of the measurement incorrectly, and so approximately one hour is missing

from the middle of the data, this may affect the analysis. We also did a horizon-to-horizon

measurement of the Moon. We used the IDL function follow and set the keywords moon

and sun respectively, this points the interferometer to follow the paths of the Moon and Sun.
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3. Data Analysis

3.1. Point Source Analysis

The main goal for this investigation in the study of the point source is to find values

for the baseline components, Bew and Bns, using a least squares fit on the fringe. The two

telescopes have different distances to the source as it moves through the sky, this results in a

time dependant path delay, τg . There are also delays introduced by the cable system in the

electronics, τc, which is independant of time. The total delay is just the sum of the two. τg
can be split into the same components as the baseline; East-West and North-South. Through

geometry we can relate these to the baseline components, hour angle and declination.

τg,ew(hs) = [
Bew

c
cosδ]sinhs (1)

τg,ns(hs) = [
Bns

c
sinLcosδ]coshs − [

Bns

c
cosLsinδ] (2)

Where L is the latitutde of the telescopes. The first term in Equation 2 is the delay perpen-

dicular to the Earth’s axis, the second is the delay parallel to the Earth’s axis, since this has

no hour angle dependance we can combine it with the cable delay, τc.

τ ′g(hs) = [
Bew

c
cosδ]sinhs + [

Bns

c
sinLcosδ]coshs (3)

The output of the interferometer is the product of the two signals from the telescopes,

using trignometric identities we can express this as:

F (hs) = cos(2πντc)cos(2πντ
′
g) − sin(2πντc)sin(2πντ ′g) (4)

We can express the delay in units of wavelength, λ, and then subsitute it into Equation 4 to

get an equation for fringe amplitude, F (hs).
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ντ ′g(Bew, Bns, δ, hs) = [
Bew

λ
cosδ]sinhs + [

Bns

λ
sinLcosδ]coshs (5)

F (hs) = Acos(2πντ ′g) +Bsin(2πντ ′g) (6)

Where A and B replace cos(2πντc) and −sin(2πντc) as the ’unknown’ constants for the

least squares fit.

In this case we use the ’Brute-Force Technique’ for least squares fitting. First, we wrote

software to apply a least squares fit on a ’flat’ part of the horizon-to-horizon Sun data. We

initially did a 1D fit where we only consider the Bew component and approximate Bns = 0.

This involved iterating through guess values for Bew and substituting them into Equation

5 until we find the minimum point of the sum-of-squares, this point gives the best value of

Bew, (see plots below), as the sum-of-squares gives the uncertainty in the fit.

Plot of Sun Data with Least Squares Fit Overplot
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Fig. 1.— Plot showing a slice of flat Sun data with the fitted values overplotted with a

dashed line.
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As you can see in Figure 1, the fit is very exact over the data. This is because we

chose a very smooth slice of the Sun data to apply the least squares fit on. By plotting

the sum-of-squares against Qew, where Qew = Bew

λ
cosδ, we found the minimum point and

rearranged the equation for Qew to get the best value for Bew, (see plot below).
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Fig. 2.— Plot showing the sum-of-squares against Qew where the minimum point gives the

East-West component of the baseline.

This gives us a value for Qew of approximately 540, resulting in Bew = 16.2m(1d.p)

Next we applied the same software on the point source data. Unfortunately the fit was not

as exact as the Sun data fit, this may be because there were alot of possible sources of error

and noise that would have affected the data, for example, the Campanile getting in the way

of the signal. The plot of Qew against the sum-of-squares seems to have a false minimum

which gives a Bew value of 60m, this may also be due to the sources of error mentioned

above. Ignoring, this minimum point, the next minimum would give Bew = 15.4m which is

a bit more realistic, see the plots below.
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Orion Data with Least Squares Fit Overplot
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Fig. 3.— Plot showing the point source data with the least squares fit overplotted with a

dashed line.

Plot showing Qew against the Sum of Squares
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Fig. 4.— Plot showing Qew against the sum of squares, where the minimum should give the

best Bew value, in this case it is most likely the second lowest peak
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We also applied a 2D fit on the point source data by creating a 2D array and plotting

a contour plot of the sum-of-squares array. If our data was accurate, this should have given

the minimum of the 2D sum-of-squares matrix plotted as a darker, ellipse-shaped region.

Unfornately, our fit is not that accurate so we only managed to obtain a straight rectangle-

shaped minimum region, see the plot below.
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Fig. 5.— Contour plot of the 2D sum-of-squares array for the point source data. The

minimum region should give the best value for the baseline.

We also found the fringe frequencies by plotting the power spectrum of the data. We

did this for the ’test’ Sun data (i.e. the measurement of the Sun in Section 2.1 that lasted

for an hour), and used the equation below to find the fringe frequency for the point source

data.

The local fringe frequency is given by the equation:

ff = [
Bew

λ
cosδ]coshs,0 − [

Bns

λ
sinLcosδ]sinhs,0 (7)
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Where hs,0 is the initial hour angle of the source. Equation 7 gives fringe frequency in

cycles per radian on the sky. It is the frequency at which the products in Equation 5 oscillate

as the hour angle changes over time. This gives us a value of fringe frequency for the point

source data of 0.048Hz.

Power Spectrum of Sun Data
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Fig. 6.— Power Spectrum of hour long Sun data showing fringe frequencies.

3.2. Sun and Moon Analysis

The main goal for measuring the Sun and Moon is to find values for their diameters.

We have to assume they are both uniformly bright disks of radius R, which is not exactly

true in reality. The interferometer response, R(hs), to an extended source, like the Sun or

Moon, can be expressed as a product between the ’point source fringe’; Equation 6, and

the fringe modulator, which multiplies this function and depends on the intensity and fringe

frequencies.
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R(hs) = F (hs) ×
∫
I(∆h)cos(2πff∆h)d∆h (8)

Where ∆h = h = hs is the hour angle, and h is the hour angle relative to the hour

angle of the source centre, hs. The fringe modulator is the Fourier transform of the source

intensity distribution on the sky. For our purposes, we expressed the integral as a sum which

runs from -N to +N where N is the number of datapoints.

MFtheory ≈ δh
n=+N∑
n=−N

[1 − (
n

N
/N)2]1/2cos(

2πffRn

N
) (9)

The modulating function goes through various zero points, which occur for ff = n
2R

,

where R is the radius of the source. We can express this in terms of fringe period 1
ff

= 2R
n

.

In the end, we can get the radius of the source, R, by comparing MFtheory with MFobserved.

This means, if we plot the power spectra of the Sun and the Moon, the zero points should

give their diameters, (see plots below).
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Power Spectrum of Sun Data
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Fig. 7.— Power Spectrum of horizon-to-horizon Sun data. The zero points give the diameter.



– 11 –

Power Spectrum of Moon Data
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Fig. 8.— Power Spectrum of horizon-to-horizon Moon data. The zero points give the

diameter.
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These power spectra do not give values of the diameters that are accurate, suggesting

something must be wrong with our data or the calculations are incorrect.

4. Interpretations and Conclusions

Our least squares fit on the Sun data seemed to give the most accurate value of the

baseline: Bew = 16.2m, since the true value is around 20m. This is probably because we

only used a small slice of the data, therefore there was less room for error and contributions

from outside sources such as hills and buildings that would have blocked the signal. The fact

that Figure 2 gave such a clear minimum suggests the fit was very accurate. Unfortunately,

the same cannot be said for the fit on the point source data. As you can see from Figure

3, the fitted values do not match the data very well at all. This is most likely because of

inaccuracies in the data or in the calculations, for example; using too small a range of baseline

guess values. Figure 4 confirms this interpretation as it seems to show a false minimum in

the data that would give a value of the baseline that is much too large. The next lowest peak

would give the correct baseline, Bew = 15.4m suggesting this is an anomalous datapoint. The

contour plot reaffirms this as we can clearly see two minimum regions. However, neither are

the correct shape that we expected, so would most likely not give us accurate values for both

baseline componenets. Figure 6 gives a smooth power spectrum of the hour long Sun data,

again telling us that a smaller slice of data gives more accurate results due to minimisation

of anomalies. Usually this would not make sense, because in a smaller dataset anomalies

would have a greater effect. However, since these measurements invlove tracking an object

through the sky for prolonged periods of time, with no way to know if the source is blocked

at any time during this measurement, the conclusion that a smaller slice of data would give

more accurate results makes sense.

The Sun and Moon analysis is another example of this, since neither gave accurate values

for their diameter and the whole dataset for each was used.

5. Challenges and Improvements

The main challenge for this investigation was writing the software for the least squares

fit. With more time, this could have been improved, and perhaps a retake of the data would

have yielded better results, especially in the case of the point source. Another improvement

would be to retake the Sun and Moon horizon-to-horizon measurements in order to get better

values for the diameters.
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6. Programs

Below is a list of procedures and batch files used to analysise the data in this report.

They can be found under the directory path /home/ejhoti/Astro121/lab3/week1 and /week2.

1. fringefreq.pro: Procedure that calculates the fringe frequency of the point source

data and plots the power spectrum of the hour long Sun data.

2. leastsquares.pro: Procedure that applies 1D and 2D least squares fit using brute

force technique on point source data.

3. orionanalysis.batch.pro: Batch file that plots the power spectrum of the point

source data.

4. diameter.pro: Procedure that plots the power spectra of the Sun and Moon using

the horizon-to-horizon data in order to find their diameters.

5. sunanalysis.pro: Procedure that applies 1D least squares fit using brute force tech-

nique on slice of Sun data.


