
MAKING, PRINTING, AND POWERPOINTING

POSTSCRIPT FILES OF GRAPHS AND IMAGES

September 10, 2011

Tim Robishaw and Carl Heiles

Contents

1 A PRELIMINARY: GREEK LETTERS AND FONTS IN X and PS 2

1.1 Three types of font . 2

1.2 Using psopen . 4

1.3 Embedded Formatting and textoidl: A Marriage Made in Font Heaven. 5

1.4 A Cautionary Note about Embedded Font Selection 6

1.5 A Positive Note about Font Selection . 6

2 ELEGANCE AND BEAUTY: PLOTTING DIRECTLY TO THE PS DEVICE 6

3 PRINTING COLOR IMAGES 7

4 POWERPOINTING POSTSCRIPT IMAGES 7

5 QUICK AND DIRTY: WRITING SCREEN PIXELS TO POSTSCRIPT 8

5.1 Copying plots with hardplot . 9

5.2 Copying images with hardimage . 9

6 APPENDIX 1: EMBEDDED FORMATTING COMMANDS 9

6.1 Positioning Commands . 10

6.2 Font Commands . 11

6.3 Defining your own font in PostScript . 12

7 APPENDIX 2: CHARACTER SIZE AND LINE SPACING 13

8 APPENDIX 3: MATH SYMBOLS SUPPORTED BY textoidl 13

– 2 –

This is the third in our series of four tutorials on images. Before starting this one you should

read our introductory overview on these four tutorials, which is entitled FOUR TUTORIALS

ON IMAGES: NOVICE → EXPERT; and also the first two in the series.

It’s one thing to get your plot or image on the screen, and quite another to get a hardcopy.

Getting a hardcopy always involves making a PostScript file, for which there are many options such

as image size, orientation, fonts, and color. You can tackle these issues in two ways. One is to slog

through the documentation and write these things yourself. The other is to take advantage of our

already having done this.

There are two basic ways to generate a PostScript file. The most elegant way, which produces

beautiful output, is to write the plotting commands directly to the PostScript file. The quick and

dirty way is to copy your screen directly onto the PostScript file; the output looks ratty for text

and graphs, which consist of lines; pixelized lines don’t look very good. We emphasize the first way

and give it extensive discussion in §2. We briefly treat the second way in §5.

First, however, we discuss the important issue of fonts. If you don’t care about fonts, skip

directly to §2.

1. A PRELIMINARY: GREEK LETTERS AND FONTS IN X and PS

1.1. Three types of font

IDL supports three types of fonts. This is done through the font keyword on IDL commands

such as plot and xyouts that write characters to the window. These include:

1. Hershey fonts, invoked by setting the keyword font=-1; it’s the default. These are vector

fonts, meaning that they are drawn as a series of lines. Characters in the vector fonts are

stored as equations and can be scaled and rotated in three dimensions. Being simply a series

of lines, they are displayed very quickly. They were invented by Dr. A.V. Hershey of the

Naval Weapons Laboratory and have nothing to do with chocolate.

Within the set of Hershey fonts there are 16 different classes; you can see them by clicking

on fonts – about in IDL’s help index. Also, our §6.2 lists the fonts available using embedded

formatting (see §1.3). The default is Simplex Roman (font number 3), which is quickest to

write and looks good on the pixelized X window display. However, it is not very pretty on

PS because the characters consist only of lines–there are no serifs and no thickness. They

don’t show up well on printed or projected images. There’s also Simplex Greek (font number

4), again the quickest. You can get improved looks by invoking different font classes within

the Hershey font set: for Roman and Greek, there are Duplex, Complex, Triples, and Italic

versions. There are several classes for Script and Gothic, and there’s Math and Miscellaneous.

The more complex font classes take longer to write and often don’t look good on the pixelized

– 3 –

computer screen. But they do look pretty good in PostScript!

2. Device fonts, invoked by setting the keyword font=0. Device fonts, also referred to as hard-

ware fonts, rely on character-display hardware or software built in to a specific display device

and include the most important hardware font, PostScript. IDL includes font metric infor-

mation for 35 standard PostScript fonts, and can create PostScript language files that include

text in these fonts. To see these fonts, get into IDL and invoke PS_SHOW_FONTS: this will

create a huge file called idl.ps in the subdirectory in which you are running IDL, which you

should view in the Unix program gv (unless you really want a printed copy!). (Note: if you

use gv, you need to specify the paper size as Letter. You can do this either in the gv window

by changing BBox to Letter, or when you call it from Unix: gv -media letter idl.ps).

In IDL, you can learn the details of using device fonts by using the online help: click on

fonts – about and then about device fonts. Again, the fonts can be selected using embedded

formatting and, also, when you open the PostScript file.

The advantages of ps fonts are beauty, clarity, and superb quality—better than Hershey fonts

and equal to or better than TrueType fonts. The disadvantage: they are supplied by the

Adobe PostScript software and are not based on equations; therefore, they cannot be rotated

or used in 3d graphs.

For most purposes, these are what you should use for making ps files. Our psopen procedure

(§1.2) makes it easy to use these elegant fonts.

3. TrueType fonts, invoked by setting font=1. We have little experience with TrueType fonts.

The big advantage of TrueType fonts is that they appear identical in PS and X, so if you

fiddle in X and get things looking perfect, it will work fine in PS. However, only a few of the

familiar embedded formatting commands for vector fonts are available for TrueType fonts.

For instance, !7 will not change the font to Complex Greek! Instead, you have to use !9. To

determine which TrueType fonts IDL supports, type the IDL command

device, GET_FONTNAMES=names, /TT_FONT, SET_FONT=’*’ and print out the names array

(or better yet, its transpose). The following commentary is lifted from IDL’s help file.

TrueType fonts, also referred to as outline fonts, are drawn as character outlines,

which are filled when displayed. These are generated from equations so, like Hershey

fonts, can be used in 3-d plots. IDL converts the character outline information to

a set of polygons using a triangulation algorithm. When text in a TrueType font

is displayed, IDL is actually drawing a set of polygons calculated from the font

information. Because the TrueType font outlines are converted into polygons, you

may notice some chunkiness in the displayed characters, especially at small point

sizes. The smoothness of the characters will vary with the quality of the TrueType

font you are using, the point size, and the general smoothness of the font outlines.

– 4 –

1.2. Using psopen

To open a PostScript file you can use the native IDL command device and invoke all of its

multifarious keywords in the proper and desirable way. You’re welcome to slog through all that.

Much easier is to use our non-native psopen command.

For most purposes, our preference is the standard Hershey fonts for X displays and device

(PostScript) fonts for the ps display. Here’s how we do it with psopen:

1. Define the variable ps. To produce X window output, we set ps=0; to produce PostScript,

we set ps=1.

2. If ps equals 1, then open the ps file with psopen. This procedure has lots of keywords for font

types; for the full set, you have to look at the procedure itself because doc_library gives

only the essentials. The most important ones include xsize, ysize, color, and various font

types. Our preference, which is based on opthamologist testing that shows the importance of

serifs, is Bold Times Isolatin1. . .

if ps eq 1 then psopen, filename, /TIMES, /BOLD, /ISOLATIN1, /color ...

3. If you have an image, write it now.

4. Before writing any characters, you need to define PostScript’s color table (See our handout

Making Annotated Images for more details):

if ps eq 1 then setcolors, /system_variables

The color keyword in psopen and the call to setcolors command are needed because, for

writing characters (i.e., vector graphics), PostScript always uses PseudoColor with 256 entries

and X uses whatever you have specified, which may or may not be PseudoColor if you are

using Linux, Windows, or Mac.

5. When writing character strings set the keyword font equal to 0 for PostScript, -1 for X; the

easy way is to set font=ps-1. (Or, if you insist on using TrueType fonts, font=1). For an

example, see §1.3.

6. After generating the plot/image, close the ps window.

1What’s this “IsoLatin”? It’s the official character coding of the Latin alphabet. See

http://en.wikipedia.org/wiki/ISO Latin-1 .

– 5 –

if ps eq 1 then begin

psclose

setcolors, /system_variables

endif

Note again our use of setcolors; we need to reset the color tables for our X window system.

1.3. Embedded Formatting and textoidl: A Marriage Made in Font Heaven.

There are two ways to do Greek letters and sub/superscripting. One is IDL’s native embed-

ded formatting; the other is the popular non-native procedure textoidl, which lets you use TEX

notation. The combination is very powerful, flexible, and convenient.

The big advantage of embedded formatting is flexibility: you can easily change font class within

a character string because you invoke a font class as part of the character string and you can do this

multiple times, anywhere in the string (you invoke a class by typing its type number preceded by

an exclamation point; click on format codes – embedded in IDL strings in IDL’s help index; or see

our §6). Embedded formatting also supports subscripts and superscripts and various mathematical

symbols (with the Math and Special Symbols font, number 9); click on fonts – positioning commands

in IDL’s help index (or, again, see our §6).

As an example of the flexibility offered by embedded formatting, you might be creating a graph

where space considerations require a small font. In such cases a conventional subscript might be

too small to read. To create an ordinary smaller subscript the embedded format command is !D;

to shift down without changing size the command is !B.

The disadvantage of embedded formatting is complexity and unfamiliarity. For this reason,

most of us prefer to generate Greek letters and sub/superscripts using textoidl. This allows you

to use the familiar TEX format to write Greek letters, subscripts, superscripts, and many of the

specialized math symbols that are provided in, say, AASTEX). For a list of these, see §8.

For example, suppose we want to annotate a graph with the string Density2/Radius3
1
≤ γ.

Using embedded formatting with Hershey fonts we have

xyouts, xloc, yloc, ’Density!U2!N / Radius!D1!U3!N !9l!X !4c!3’, font=ps-1

Note to get the ≤ sign we had to convert to Font 9 (Math and Special Symbols font) by typing !9,

look up how to get that symbol (by typing lowercase “l”; see §8 or the IDL documentation), and

then back to the original by typing !X. In contrast, using textoidl we have

xyouts, xloc, yloc, textoidl(’Density^2 / Radius_1^3 \leq \gamma’, font=ps-1), font=ps-1

– 6 –

They produce identical output. You could, if you really wanted, put the embedded positioning

commands within the textoidl string instead of using the TEX-style subscripting and superscript-

ing.

IMPORTANT: You must specify the font keyword (font=ps-1) in both textoidl and

xyouts!!!!! For ps fonts, you must have font=0; and for Hershey fonts, you must have font=-1.

And you must do this in any plot command that writes characters, such as plot and contour. The

easy way to do this is, before starting your plotting, define the system font variable; then you don’t

have to define it in each plotting command. To do this, enter

!p.font = ps - 1

When you are all done with plotting, you should prabably set it back to the hardware font value,

!p.font = -1

1.4. A Cautionary Note about Embedded Font Selection

Embedded font selection can be very useful, but there is a problem: the meaning of a font

number depends on whether you are using Hershey, hardware, or TrueType fonts! See the table

in §6.2. This is a problem because your character output will depend on the value of the font

keyword.

This is the beauty of textoidl: it does Greek and Roman seamlessly without changing the

font keyword. So for most purposes, textoidl is much better than embedded font selection!

1.5. A Positive Note about Font Selection

Once you specify a font, the specification remains unless you change it. In particular, this

applies to embedded fonts—meaning that if you change the font when writing a character string

with xyouts for example, it will remain changed in future calls to xyouts. If you don’t want this,

you must revert back to the original font, which you could do with the !X embedded font command.

This is also true with PostScript font selection: once you call psopen with a set of fonts, they

will remain in future calls unless you specify otherwise.

2. ELEGANCE AND BEAUTY: PLOTTING DIRECTLY TO THE PS DEVICE

Here you specify the ps device as the output window and use IDL’s plotting commands (like

plot, xyouts, and tv) to write directly to it. This takes full advantage of PostScript’s unique

ability to deal with the two basic types of image, vector graphics and pixel images. If you do it

– 7 –

right, you also gain the flexibility and built-in excellence of PostScript fonts.

Normally, you first generate your plot or image on the X terminal window, going through

a process of iteration until you arrive at what you want. This involves invoking a set of IDL

commands. Having done this, you specify PostScript as the output device and invoke the same set

of IDL commands. You look at the resulting plot or graph using the UNIX xv or gv program (we

recommend xv). You’ll find that it doesn’t look exactly the same as it did on X, so you’ll need to

do some more fiddling (unless you’re using TrueType fonts).

So making and looking at the ps file is normally a four-step process:

1. Define the PostScript device as the output device. We recommend using psopen; see §1.2.

2. Generate the plot or image, with annotation.

3. Close the ps device and redefine the output device as the X-window. Again, see §1.2.

4. Look at the output with xv test.ps or gv test.ps and, if necessary, make iterative adjust-

ments by returning to step 2.

3. PRINTING COLOR IMAGES

Color laser printers are the rage. However, their ability to display colors is very limited. They

are fine for graphs with different colored lines and other applications where there are no subtle

color issues. Otherwise they are terrible.

Inkjet printers are much, much better at reproducing color. They can do very well with

complicated color images. That’s why all printers meant for photographic reproductions at home

are inkjets. Our department has both a laser and an inkjet color printer. To use the laser printer,

type lp -d color filename.ps . To use the inkjet:

lp -d photo filename.ps

When this printer doesn’t work (note the “when”, not “if”) go see Kelley or Bill. Of course, if you

are using transparencies, you are a dinosaur. Try OpenOffice or PowerPoint! (Carl is a dinosaur

but nevertheless has been propelled into the modern age, kicking and screaming, by the restrictive

requirement, at scientific meetings, of providing PowerPoint talks on a memory stick.)

4. POWERPOINTING POSTSCRIPT IMAGES

You can’t import a PostScript file into PowerPoint. So what’s the poor Linux user to do?

Use the Linux convert program to create a .png file and create plenty of pixels so you don’t lose

– 8 –

resolution:

convert -verbose -antialias -density 600 -geometry 25% -quality 95

file.ps file.png

When you import the result into PowerPoint, you’ll have to make the image smaller. But it’s

worth the extra effort—the result will look superb! The reason: png files are lossless. png stands

for “Portable Network Graphics”; see http://www.libpng.org/pub/png/

One more thing. The native resolution of most projectors is 1024× 768. You should set your

laptop’s output display size to this. Otherwise you risk losing the edges of your image or having

little waves crawling up the display.

5. QUICK AND DIRTY: WRITING SCREEN PIXELS TO POSTSCRIPT

Above we described how to make elegant, beautiful PostScript images. It requires rerunning

the plot/imaging commands. Here we describe the quick and dirty way, which does not require

rerunning: you first generate the X window version; then you read the image pixels directly from

the screen and turn them into a PostScript file. Using our procedures, this is quick and totally

painless. However, the output looks ratty for text and graphs, which consist of lines; pixelized lines

don’t look very good. But you may be willing to put up with this sometimes—if you’re in a hurry,

or making a hardcopy for your lab notebook, for example. If you want to use this quick and dirty

technique but want better-looking results, use a larger window; the pixelization on the hardcopy

will be less noticeable.

This consists of two subsections, one for plots and one for images. For plots, we assume

grayscale with either two levels (1 bit—black and white) or 256 levels (8 bits—grayscale; some

plots have shading). If your color table has fewer than 256 levels, we interpolate it to 256; this

is great for grayscale, but if you are using a non-gray color table it will probably give you weird

results.2

Both procedures retain the aspect ratio on the window, even if you try to change it with the

keywords. If you want a different aspect ratio, then generate a new window with the desired aspect

ratio (using IDL’s window, xsize=256, ysize=512, for example) or rewrite the procedure for

yourself.

2If this statement confuses you, see BIDIDL.

– 9 –

5.1. Copying plots with hardplot

We assume you’ve already generated your plot. Specify the window from which to read the

image using IDL’s wset command. Then type

hardplot

It will ask for the name of the output filename. hardplot is a home-grown procedure that has

keywords that allow you to do various things. The default values are set for reproducing ordinary

black/white plots, inverting the white-on-black that you see on your screen to the black-on-white

that you should use for a printed output. In particular, it produces only black on white in the ps

file; so if the original had, say, red and yellow and white graphs on the X black background, the

three lines would all appear black against the white ps background. See the documentation.

Suppose you’ve called the resulting PostScript file plot.ps. To view this PostScript file before

printing—always a good idea—use the UNIX command

xv plot.ps

or, from within IDL, you can invoke this (or any other) UNIX command by putting a dollar sign

in front of it:

$xv plot.ps

The xv utility has lots of options that you can access by moving the mouse cursor onto the image

and clicking the right-hand button. Try it!

5.2. Copying images with hardimage

hardimage reproduces the X window display faithfully to the PostScript file. It’s almost

identical to hardplot running with nbits=8 and the noreverse option, but it also copies the colors

if the image is not grayscale.

6. APPENDIX 1: EMBEDDED FORMATTING COMMANDS

Here we provide the embedded formatting commands used by IDL. To use them, simply write

the command preceded by an exclamation point; the formatting remains until you change it3.

3So how do you write an exclamation point? You type two exclamation points!!

– 10 –

6.1. Positioning Commands

We begin with the positioning commands:

Command Action

!A Shift above the division line.

!B Shift below the division line.

!C "Carriage return," begins a new line of text. Shift back to the

starting position and down one line. This command also performs an

implicit "!N" command, returning to the normal level and character size

at the beginning of the new line.

!D Shift down to the first level subscript and decrease the character

size by a factor of 0.62.

!E Shift up to the exponent level and decrease the character size by a

factor of 0.44.

!I Shift down to the index level and decrease the character size by a

factor of 0.44.

!L Shift down to the second level subscript. Decrease the character

size by a factor of 0.62.

!N Shift back to the normal level and original character size.

!R Restore position. The current position is set from the top of the

saved positions stack.

!S Save position. The current position is saved on the top of the saved

positions stack.

!U Shift to upper subscript level. Decrease the character size by a

factor of 0.62.

!X Return to the entry font.

!Z(u0,u1,...,un) Display one or more character glyphs according to their

unicode value. Each ui within the parentheses will be interpreted as a

– 11 –

16-bit hexadecimal unicode value. If more than one unicode value is to

be included, the values should be separated by commas.

!! Display the ! symbol.

6.2. Font Commands

We finish with the font commands. The meaning of the font commands depends on whether

you are using Hershey, hardware, or TrueType fonts, as outlined in the table below:

Command Vector Font TrueType Font PostScript Font

!3 Simplex Roman (default) Helvetica Helvetica

!4 Simplex Greek Helvetica Bold Helvetica Bold

!5 Duplex Roman Helvetica Italic Helvetica Narrow

!6 Complex Roman Helvetica Bold Italic Helvetica Narrow

Bold Oblique

!7 Complex Greek Times Times Roman

!8 Complex Italic Times Italic Times Bold Italic

!9 Math/special characters Symbol Symbol

!M Math/special characters Symbol Symbol

(change effective for

one character only)

!10 Special characters Symbol * Zapf Dingbats

!11(!G) Gothic English Courier Courier

!12(!W) Simplex Script Courier Italic Courier Oblique

!13 Complex Script Courier Bold Palatino

!14 Gothic Italian Courier Bold Italic Palatino Italic

– 12 –

!15 Gothic German Times Bold Palatino Bold

!16 Cyrillic Times Bold Italic Palatino Bold Italic

!17 Triplex Roman Helvetica * Avant Garde Book

!18 Triplex Italic Helvetica * New Century Schoolbook

!19 Helvetica * New Century Schoolbook

Bold

!20 Miscellaneous Helvetica * Undefined User Font

!X Revert to the entry Revert to the entry Revert to the entry

font font font

* The font assigned to this index may be replaced in a future release

of IDL.

6.3. Defining your own font in PostScript

Suppose you are using PostScript fonts and want to use the Bookman Demi Italic with ISO-

Latin1 font encoding for one of your math symbols. This is not one of the current embedded

formatting options. Nevertheless, you can do it if you are using PostScript fonts! IDL lets you

replace one of the font indices with whatever font you define.

Here’s how you do this: Let’s replace the ”Zapf Dingbats” PS font in the !10 font index.

IDL> psopen, ’foo.ps’, /HELVETICA, /BOLD, /OBLIQUE, /ISOLATIN1

IDL> DEVICE, /BKMAN, /DEMI, /ITALIC, /ISOLATIN1, FONT_INDEX=10

IDL> plot, findgen(3), FONT=0, $

IDL> xtit=’Galactic Radius !10’+string(174B)+’!X [kpc]’, $

IDL> ytit=’Density !10’+string(181B)+’!X [cm!E-3!N]’

IDL> psclose

Note the use of !10, which converts to your defined font; and !X, which converts back to the original

one4. You cannot change font indices like this for TrueType or vector fonts! Only PostScript fonts!

4Note, also, we didn’t use the color keyword and call to setcolors because this is a pure black/white (no gray or

– 13 –

7. APPENDIX 2: CHARACTER SIZE AND LINE SPACING

When annotating graphs or images with xyouts, the bottom of the characters locate at the y

value you specify. Sometimes you want the middle of the characters to so align. To do this, you

need to align the character lower by half its height. How do you know the character height?

Look in the online help under SET_CHARACTER_SIZE; it tells you about the character sizes,

which are stored in !D.X_CH_SIZE and !D.Y_CH_SIZE. The units are device pixels. The default

pixel size in PostScript is 10−3 cm, so this is kind of awkward. . . .

It’s probably your choice to place the text in data coordinates instead of device or normalized

coordinates. The text height in data coordinates is

y_ch_size_data = !d.y_ch_size / !y.s[1] / !d.y_vsize

To make the center of the symbols align where you want in the vertical direction, subtract half of

this from the desired y position.

8. APPENDIX 3: MATH SYMBOLS SUPPORTED BY textoidl

Here is a table of the specialized math symbols supported by our version of textoidl. The

first column gives the textoidl sequence, the second the character in font number 9, and the third

the specificaion in PostScript if you are not using textoidl.

TeX SEQUENCE VECTOR POSTSCRIPT

\aleph @ string(byte(192))

\ast * *

\cap 3 string(byte(199))

\cdot . string(byte(215))

\cup 1 string(byte(200))

\exists E $

\infty $ string(byte(165))

\in e string(byte(206))

\equiv : string(byte(186))

\pm + string(byte(177))

\div / string(byte(184))

\subset 0 string(byte(204))

colors) image.

– 14 –

\superset 2 string(byte(201))

\leftarrow 4 string(byte(172))

\downarrow 5 string(byte(175))

\rightarrow 6 string(byte(174))

\uparrow 7 string(byte(173))

\neq = string(byte(185))

\propto ? string(byte(181))

\sim A string(byte(126))

\partial D string(byte(182))

\nabla G string(byte(209))

\angle a string(byte(208))

\times X string(byte(180))

\geq b string(byte(179))

\leq l string(byte(163))

\’ ’ string(byte(162))

\prime ’ string(byte(162))

\circ % string(byte(176))

For more complex symbols you will need to use embedded fonts. Alternatively, you can define

your own in textoidl; see its documentation.

