
IDIDL—IMAGE DISPLAY AND MANIPULATION; AND COLORBARS

August 29, 2011

Carl Heiles

Contents

1 PIXELS, COLORS, BYTES 2

2 DECOMPOSED COLOR (i.e., TrueColor) vs. COMBINED COLOR (i.e., Pseu-

doColor) 3

2.1 Combined Color: 256-Element Colortables . 3

2.2 Decomposed Color . 4

2.3 What Have I Done? . 4

3 VISUAL CLASSES: STATIC (TrueColor) VERSUS DYNAMIC (DirectColor) 4

4 LET’S TALK ABOUT COMBINED COLOR—256-ENTRY (8-BIT) COLOR

TABLES 5

4.1 Linear Mapping, both Direct and Reversed . 5

4.2 Nonlinear Mapping . 6

4.3 Why We Need Nonlinear Mapping . 6

5 DISPLAYING AN IMAGE IN IDL 7

5.1 An Example: Read the Image from a FITS File . 7

5.2 Displaying and Examiming the Image with Tim Robishaw’s (TR’s) display 8

5.3 Displaying and Examining the Image with IDL’s Native Procedures 8

5.3.1 Image Size and Window Size . 8

5.3.2 Displaying the Image with tv . 9

5.4 Using rdpix and tr profiles (or profiles) After You Used tv 9

6 EXPLORE AND HAVE SOME FUN WITH THIS IMAGE! 10

– 2 –

6.1 If You Have a Dynamic Colortable, Try the Cursor... 11

6.2 Manipulating the Image by Manually Changing the Colortable 11

7 REDISPLAY USING THE MODIFIED COLORTABLE 12

7.1 Redisplaying the Image with display . 12

7.2 Redisplaying the Image with tv . 12

8 AND NOW THE ASTRONOMY. . . 12

9 ADD A COLORBAR! USING TIM ROBISHAW’S colorbar 13

9.1 A 1d Colorbar . 13

9.2 A 2d Colorbar . 14

10 USING display 2d FOR 2D IMAGES 15

11 USING rgbimg FOR 3D COLOR IMAGES 15

1. PIXELS, COLORS, BYTES

Your display screen consists of about a million little areas called pixels. Each pixel can show

a different color/intensity combination. Everything on your screen—text, pictures, whatever—

is displayed by filling the appropriate pixels with the appropriate color/intensity. Your screen

dimensions might be 1280 × 1024 (5 × 4 aspect ratio)—found on many computers of all kinds

(known as SXGA); the somewhat larger 1440 × 900 (8 × 5 aspect ratio), known as SXGA+; or

1024× 768 (4× 3 aspect ratio)—found on older computers and small laptops. These aspect ratios

come in much larger dimensions, like 1600× 1200 pixels for 4× 3. Each pixel is small! But if you

look carefully, you can see them.

Typical CCD projectors (as used for PowerPoint) have the 4× 3 format with 1024× 768 pixels

as their native resolution, so you get best results, with no image cropping, when you set your video

card’s resolution to this value.

– 3 –

2. DECOMPOSED COLOR (i.e., TrueColor) vs. COMBINED COLOR (i.e.,

PseudoColor)

All colors seen by the human eye can be produced by a suitable mixture of intensities of only

three colors: red, green, and blue (RGB). Most common displays in use today allow 256 intensities

of each color1. This gives a total of 2563 combinations—this used to be billed in the PC world as

“millions of colors”. This is called TrueColor.

Believe it or not, it is often desireable to degrade the full “millions of colors” true scheme to a

256-color scheme; this is called PseudoColor. In Pseudocolor, you are combining the separate RGB

colors into a single 256-element set; that’s why it’s called Combined color. The particular set of 256

colors chosen is called the colortable; each of the 256 colors is a particular combination of RGB.

The most common colortable is the grayscale one. In this, the intensities of RGB are all

identical. They change uniformly from zero intensity (for entry number 0—this makes black) to

full intensity (for entry number 255—this makes white). In between, we have all shades of gray. An

image made with the grayscale colortable looks like a black-and-white photograph. If you choose

a non-gray colortable, then you have what’s often called “false color”, which can be helpful in

highlighting certain features or achieving more contrast. We give an example below, and other

examples in our “1d2d3d: One, Two, and Three Dimensional Color Images” memo.

2.1. Combined Color: 256-Element Colortables

In your computer’s memory, an image consists of a two-dimensional array of data values d, one

for each pixel. These are actual numbers. Their range is restricted: d can take on 256 different

values, ranging from 0 to 255. On your screen, the image consists of projected light in each pixel,

which we call the intensity I.

There is a one-to-one relationship between d and I, so there are also 256 different possible

values for I. Generally speaking, this relationship is specified by the “color table”. The color table

is often nonlinear so as to emphasize weak or strong features. Sometimes it’s an equal mixture

of red, green, and blue (grayscale); sometimes the mixture is engineered to produce color. By

“Intensity” (I), we mean the 256 different possible combinations of light intensity and color, one

for each value of d.

To use combined color in IDL, you must turn the native 2563 RGB colors into a 256-element

colortable, which you accomplish by turning color decomposition off. You do this with the command

device, decomposed=0

By default, IDL sets the three colortables equal, which gives you grayscale. You can redefine this;

1Note that 256 is the same as 28: it’s 8 bits—or, alternatively, 1 byte.

– 4 –

we’ll explain how later.

2.2. Decomposed Color

For ordinary non-image work you almost always want TrueColor so you can make any color

you want on the graphics output; you don’t want to be restricted to 256 colors. In TrueColor, you

have 256 different possibilities for each of the three colors RGB, so you have 2563 color possibilities.

It’s definitely not a 256-element colortable! In IDL, you can turn color decomposition on with

(guess what!)

device, decomposed=1.

2.3. What Have I Done?

You can oscillate between decomposed and combined color at will, to your heart’s content. In fact,

you sometimes need to do this when making color images in PostScript files. To see what you’ve

told IDL, enter

help, /device

If you are in TrueColor with decomposed color turned off (i.e., a 256-element colortable) it will say

“Graphics pixels: Combined”; if it isn’t turned off it says “Graphics pixels: Decomposed”. It also

shows the sizes of all graphics windows and tells you which visual class you’re running (TrueColor

or DirectColor). If you are in PostScript mode, in which it writes all output to a PostScript file

instead of the screen, it will tell you so.

3. VISUAL CLASSES: STATIC (TrueColor) VERSUS DYNAMIC (DirectColor)

When working with images you often want to have real-time cursor control of the colortable so

that you can tailor the image appearance to your needs by changing the contrast or the displayed

intensity range. For this you need a dynamic color table. TrueColor, and colortables based on

TrueColor, do not have this cursor-control capability because TrueColor is a static colortable. The

dynamic color table is called DirectColor. It works exactly the same as TrueColor, except that

the transfer function between the data numbers and displayed intensities can be changed in real-

time with the cursor. These days, the dynamic capability is not available on any machine running

Windows or on Macs; it’s available only on PCs running Linux. If you have such machine, you can

try out DirectColor using our example below.

If you want a dynamic colortable and you are lucky enough not to have a Mac or PC with

Windows, then you have to tell IDL what visual class you want—i.e., TrueColor or DirectColor—

– 5 –

and you must choose the mode first thing. Once you set it, you can’t change it without re-entering

IDL. With our locally-preferred startup file you are queried for this choice. Normally, you choose

TrueColor: the only exception is when you want to manipulate image contrast and brightness with

the cursor.

4. LET’S TALK ABOUT COMBINED COLOR—256-ENTRY (8-BIT) COLOR

TABLES

The remainder of this tutorial assumes you have turned color decomposition off, i.e. you are

using combined color. In this PseudoColor mode, the maximum number of color/intensity combi-

nations that can be displayed simultaneously is 256. Therefore, images are represented by numbers

that range 0 → 255. For this reason, displayed images are always represented by byte arrays. You

can display other array data types, but IDL will convert whatever you give it to a byte array before

displaying it. Therefore, if you display, say, an integer array (integers are two bytes long and range

from −32768 → 32767), and if numerical values in this array exceed 255, then the resulting image

display will look weird. That’s because, in converting from integer to byte, numbers that exceed

255 will “wrap around”. For example, integer 255 equals byte 255, but integer 256 equals byte 0,

integer 257 equals byte 1, etc. Below, we’ll deal with these conversions in more detail.

For now, let’s restrict our attention to black/white images—otherwise known as “grayscale”

images. Gray, or white, is composed of an equal mixture of red, green, and blue, and all we deal

with is the intensity I. In a grayscale image, the intensity of each pixel is related to the data value

d in that pixel. Let’s think of large intensity being white and small intensity being black; there are

256 different possible intensities, so I can range from 0 → 255. Similarly, the data values d can

range from 0 → 255.

An important concept is the relationship between I and d. This is known as the color table.

It specifies the mapping between data value and color/intensity—or, for a grayscale image, the

mapping between data value and intensity.

4.1. Linear Mapping, both Direct and Reversed

The simplest mapping between data value d and intensity I is a linear one with

I = d (1)

In this case, a data value d = 255 gives white and d = 0 gives black. This direct mapping is the

default manner in which images are displayed on the computer screen: there is a black background

on which the image is painted with increasing data values being increasingly white. However, on a

piece of paper the relationship is usually reversed, because paper is white and provides a naturally

– 6 –

white background. Thus, in this reversed mapping, we want to paint the image with increasing

data values being increasingly black. This is also a linear mapping, but reversed:

I = 255− d (2)

NOTE: Printed images usually look much better with the reversed mapping, because printers have

a hard time giving a uniformly black area with no streaks. This is the first reason why printed

images should be made with a reversed mapping. The second reason is that in scientific journals,

images with the reversed mapping are reproduced much better. The third reason is that making

the paper black uses lots of printer toner, which is expensive. To reverse the color table, you can

use equation 2. Alternatively, for a byte array called img, you can type tv, not(img) instead of

tv, img.

4.2. Nonlinear Mapping

The linear mapping is often not very useful because you usually want to highlight weak features

or bright features; we’ll see an example below. The most commonly used nonlinear mapping uses a

power law (this is the photographer’s “characteristic curve”) together with a “stretch”, which cuts

off the image at dim and bright intensity levels:

I = 255

(

d− dbot

dtop − dbot

)γ

, d = dbot → dtop (3a)

I = 0, d ≤ dbot (3b)

I = 255, d ≥ dtop (3c)

In a reversed mapping, you’d substitute (255− d) for d in the above equations.

There is one other commonly used nonlinear mapping, the so-called “histogram equalization”

technique. In this technique, the mapping is modified on an image-by-image basis so that, all of

the 255 colors are used in an equal number of pixels. Read about it in IDL’s documentation on

hist equal.

4.3. Why We Need Nonlinear Mapping

Never forget that the idea is to turn the data array into an image that conveys information to

– 7 –

the brain. The idea is not to be so strictly quantitative that details of interest are obscured.

You want to bring out details of interest. For example, for many images of the interstellar gas

you want to emphasize weak structures at the expense of the fidelity gained by a strict proportion-

ality between image brightness and data value. To this end, choose a color table and experiment

with the image transfer function. At minimum, this involves changing the span of the data values

represented in the image and raising the data values within that span to a power: a power less

than unity to emphasize weak features, larger than unity for strong ones.

5. DISPLAYING AN IMAGE IN IDL

We are still assuming that you have turned color decomposition off, i.e. you are using a 256-

entry color table. To accomplish this feat, see §2.

Below, we describe two methods to put the image on your computer screen (in computerese:

“write the image onto your X window”). One (§5.2) is simpler and uses Tim Robishaw’s (TR’s)

display procedure. The other uses IDL’s native procedures; it’s a bit more cumbersome but is

more useful when you want absolute knowledge of which pixel is which.

5.1. An Example: Read the Image from a FITS File

First, generate an image. For this example there’s a nice image of the X-ray sky, obtained by

the ROSAT satellite on the web at:

http://astro.berkeley.edu/∼heiles/handouts/rass_c.fits.

Copy this file to the disk area where you are running IDL. To accomplish this, go to

http://astro.berkeley.edu/∼heiles/handouts/ and hold Shift down while you left click on

the file name; or right click on the file name. Easier for the Linux user is wget: type wget

http://astro.berkeley.edu/∼heiles/handouts/rass c.fits

This file is in a format called “fits” format, which is the same format of many astronomical

images. To read the data file into an array called image, it is easiest to use the IDL procedure

called “readfits”, which resides in the Goddard IDL library which, in turn, is already in your IDL

path. All you have to do is type

image = readfits(’rass c.fits’, headerinfo)

This returns two arrays: the image array (image) and information about the image (headerinfo);

type print, headerinfo to see the header information. Now type help, image and IDL will tell

you that it is a 480× 240 FLOAT array.

Now we’re ready to write the image to the X window.

– 8 –

5.2. Displaying and Examiming the Image with Tim Robishaw’s (TR’s) display

This is really easy. Here, you just type

display, image, out=out

and it displays the image in the current graphics window, automatically doing the size scaling and,

also, the byte scaling of the bytscl command below. If you want a bigger image on your window,

make a bigger window and invoke display again. The variable out is output from the procedure

and is a structure which contains useful information for later processing.

display has other features/options and can produce labelled axes, enhanced contrast, etc. See

§2.1 of TRDIDL. In addition, you can interactively examine data points with the cursor using trc,

and you can plot 1d cross sections versus x or y using trp. See §2.3 of TRDIDL.

5.3. Displaying and Examining the Image with IDL’s Native Procedures

This method is more cumbersome, but you can retain the original pixels, so you always know

how your actions relate to the original pixels.

5.3.1. Image Size and Window Size

This image is 480 × 240. Each element will occupy a single pixel on the screen, so we need

a window of at least that size to display the whole image. We can use a bigger window, in which

case the image won’t fill the window area. If we use a smaller window, only part of the image will

be displayed. We can create a window of the appropriate size, that is with numbers of pixels equal

to the same dimensions of the data array, by typing

window, xsize=480, ysize=240

and then displaying as directed in §5.3.2.

Maybe you’d like a bigger image in a bigger window so you can see things more clearly. Or

maybe the image is too large for your screen and you need to make it smaller so it fits. In either

case, you need to change the size of the image as measured in pixels. IDL does this easily. Suppose

you want to increase the size by a factor of 2 in the horizontal and 3 in the vertical direction2, i.e.

to make an array of size 960× 720. Do this by

bigimage = rebin(image, 960, 720)

2Using different factors for horizontal and vertical changes the aspect ratio, which is usually a bad idea; we do it

here simply for illustration.

– 9 –

Then create an appropriately-sized window (e.g. with window, 5, xsize=960, ysize=720); this

creates a new window, numbered 5, and leaves the old ones in place.

You can also resize the image using congrid, which works for non-integral factors. You might

say, “Well, I’ll always use congrid—it’s more flexible”. But be careful! congrid and rebin handle

enlargement and ensmallment differently, and treat the edges differently. With congrid, you almost

certainly don’t want to use the default options; look carefully at the keywords and try them out on

a short 1-d array to see their effects. Usually, rebin is better; don’t use congrid unless you know

what you’re doing.

5.3.2. Displaying the Image with tv

Display the image by typing

tv, image

and you see a gray mishmash oval. The oval is the Aitoff projection of the entire sky in soft X-

rays. The mishmash occurs because the data values in image exceed the allowable 0 → 255 range

of a byte array, so there’s lots of wrapping. You can use the max and min functions (or, nicer,

Goddard’s minmax function) to determine that the data values range from about −174 → 45337,

thus far exceeding the valid range for a byte array.

You can scale the data so that they all fit in the allowable byte range 0 → 255. We’ll first

produce a byte array, which we’ll call byteimage, from image. . .

byteimage = bytscl(image)

This linearly scales image, which ranges −174 → 45337, into byteimage, ranging from 0 → 255.

To display this image. . .

tv, byteimage

At this point, you’ve got the same image you’d have at the end of §5.2 by using display.

5.4. Using rdpix and tr profiles (or profiles) After You Used tv

If you used tv and not display, then you can use rdpix, which prints the pixel values of the

image you move the cursor on the image. What we really want is the values of the original data

array, not its byte counterpart, so we specify that by typing. . .

rdpix, image

and then the printed numbers will be of the original data array image (If you want the byte image,

use rdpix.), byteimage. After some inspection we see that limiting the data range to 0 → 2000

– 10 –

would indeed be a good start.

Nicer than rdpix is the native IDL procedure profiles. Nicer still is TR’s enhanced version,

tr_profiles. If you used tv, type

tr profiles, image

and follow the printed instructions. You get a plot of the original data array in its original units,

either in the horizontal or vertical direction, along a line you choose with the cursor. In our example,

this plot is so compressed that it is virtually worthless, because the plot automatically scales to the

minimum and maximum values of the array; you can get around this easily by using the < and >

operators; for example,

tr profiles, (0 > (image < 5000))

Here, the (image < 5000) means “take whichever number is smaller, either the data value in image

or the number 2000”; and the 0 > X means “take whichever number is larger, either the data value

in X or the number 0”. So the plot yaxis range is limited to the range 0 to 5000.

6. EXPLORE AND HAVE SOME FUN WITH THIS IMAGE!

What Do You See in this Image? All you see is two white dots! These two dots are the

strongest X-ray sources in the sky—the one on the left is a point source called “Cygnus XR-1”,

and the one on the right is the Vela supernova remnant, home of the famous “Vela pulsar”. In

supernova remnants, the X-ray emission is produced by hot, ∼ 106 K gas heated by the expanding

shock of the supernova remnant.

These images contain much more! To see more, we need to change the contrast by invoking a

nonlinear mapping of data d to screen intensity I. You can do this dynamically (in real time with

the cursor; see §6.1) if you have DirectColor, and you can do it statically (see §6.2).

There’s lots more in image processing and display. Of course, you can manipulate images

mathematically, just as you can any other IDL variable or array—but remember to manipulate

the original array instead of its byte counterpart. As we did above, you can play with color tables

with xloadct and ct_fiddle. You can make a histogram [e.g. histo = histogram(image)] of

the original image; this tells you where most of the brightness data are concentrated. And if

you’re interested in only a portion of the image, you can select this portion with the cursor using

defroi. You can do “histogram equalization” with hist equal. You can rotate with rotate or

rot, transpose, zoom, draw contours, label your images and make coordinates using plot (with

the /noerase keyword) and xyouts, etc., etc., etc.

To learn the range of native IDL capabilities, enter IDL and type “?”, which brings up the

online help window. Click on “List of IDL Routines by Functional Area” and take a look at the

sections entitled “Array Manipulation”, “Color Table Manipulation”, “Direct Graphics”, “Image

– 11 –

Processing”, “Plotting”, “Signal Processing”.

6.1. If You Have a Dynamic Colortable, Try the Cursor...

If you’re in DirectColor3, try changing the contrast with the cursor. The particular nonlinear

mapping of equation 3 can be invoked easily and automatically in IDL by typing xloadct or—

better for interactive work—Tim Robishaw’s ct_fiddle4. These programs allow you to change

the values of (γ, dbot, dtop) with the mouse and watch the contrast of your image change.5 You can

also change from grayscale to PseudoColor by selecting one of IDL’s predefined color tables, using

either xloadct with the mouse or manually using loadct (e.g., loadct, 5 loads IDL’s color table

number 5. You can, of course, define your own colortable.).

Using either xloadct or ct fiddle, play around with contrast. You can see that the sky

contains a weak, diffuse glow in X-rays. Trouble is, though, that this glow is so weak that the

intensity (I) values of this glow all lie in the range d ∼ 0 → 4. This provides very little dynamic

range for this glow, so we need to expand this range by changing the colortable so that we can see

its structure more clearly.

6.2. Manipulating the Image by Manually Changing the Colortable

To see anything other than the two bright sources, we need to change one or more of (dbot, dtop, γ).

How much should we expand the dynamic range? We might make a guess and try dbot = −174 and

dtop = 2000. If that didn’t give a nice result, we could try some other values. But we don’t have to

guess! IDL provides several nice ways to interactively print the values of the image.

Firstly, you can get a quick feel for the interesting data range by just doing plot, image and

visually estimating the range of interest. However, you learn more by sampling the image itself

using trc and trp (if you used display, or rdpix and trprofiles (if you used tv).

3With a dynamic colortable, sometimes the whole terminal screen changes colors when you move the cursor onto

an IDL window. This is commonly known as flashing. This is one reason why we recommend using TrueColor for all

IDL sessions in which you will not be doing image processing with dynamic color tables. There can be no flashing

with TrueColor because there are no dynamic color tables.

4If you are using a dynamic color table, ct fiddle will change the image display in real time for any specified

combination of R, G, and B. However, with xloadct the image doesn’t track the sliders; after you move a slider, you

need to put the cursor on either the colorbar in the xloadct GUI or on the image itself.

5
xloadct also allows you to select a reversed mapping and to select a multitude of predefined color tables, not

only grayscale but many others. xloadct also allows you to generate any completely arbitrary nonlinear mapping;

click on “Function” and experiment.

– 12 –

7. REDISPLAY USING THE MODIFIED COLORTABLE

Now, having determined suitable values for dbot and dtop, we want to display the appropriately-

scaled image.

7.1. Redisplaying the Image with display

If you’re using TR’s display, it’s just

display, image, min=0, max=2000

7.2. Redisplaying the Image with tv

To display the data range 0 → 2000, we again use the bytscl command as above but limit

the data range by typing. . .

byteimage = bytscl(image, min=0, max=2000) .

This performs a modified scaling, mapping the original data range 0 → 2000 into the byte value

range 0 → 255. It also sets any original data numbers that exceed 2000 equal to 255, and any that

are smaller than zero equal to zero—so it obliterates information on the strongest features.

Now display this with

tv, byteimage

8. AND NOW THE ASTRONOMY. . .

If you have DirectColor, Use xloadct or ct fiddle to play around with contrast; if not,

experiment with gamma. When you increase the sensitivity to small numbers by using γ < 1, you

see the diffuse background. See that huge circular structure in the middle? That’s the “North

Polar Spur”. It occupies an angle of about 120◦. It’s close—almost touching our noses! It’s caused

by several dozen supernovae that have exploded, producing a “superbubble”. These supernovae

were located in the large cluster of young stars in the Scorpio constellation—some of the stars you

see there on a dark night will explode as supernovae some day, adding to the energy stored in the

hot gas and brightening the X-ray emission. You also can see a bunch of fairly weak point sources

and other diffuse structures.

– 13 –

9. ADD A COLORBAR! USING TIM ROBISHAW’S colorbar

Displaying an image without a colorbar is like displaying a graph with axes that have no

numbers or labels. It’s easy to add a colorbar with Tim’s colorbar. This procedure does either 1d

or 2d colorbars; see the images in the handout “1d2d3d: One, Two, and Three Dimensional Color

Images”. Here’s how:

1. Decide where to put the colorbar. Decide if you want a horizontal colorbar (usually on the

top) or a vertical one (usually on the right hand side). There’s a keyword vertical; set it

appropriately.

2. Define position, a 4-element vector that specifies the normalized coordinates6 of the corners

of the colorbar. The 4 elements are in order (lowleftx, lowlefty, uprgtx, uprgty). For example,

for a horizontal colorbar on the top you might choose something like position = [0.1,

0.8, 0.9, 0.9] . If you have a horizontal colorbar and you want it to extend the exact length

of the image, you can get the normalized position of the left and right edges of the image

from the system variable !x.window; similarly, the top and bottom are stored in !y.window.

So if you wanted a colorbar that matched the width of the image and you wanted it to have a

height of 10% of the height of the window, then you could make the colorbar float 5% above

the top of the image by providing a position vector of:

position = [!x.window[0],!y.window[1]+0.05,!x.window[1],!y.window[1]+0.05+0.10]

You need enough space for the colorbar. If any element of the position vector lies outside

the range 0 → 1, then when you run colorbar it will spill over the edge of the window, in

which case you might get an error like this:

% DISPLAY: Normalized POSITION[2:3] must be less than 1.

% Execution halted at: DISPLAY 731

9.1. A 1d Colorbar

For an example, see the appendices in our tutorial “1d2d3d: One, Two, and Three Dimensional

Color Images”.

1. Define the data values that correspond to the min and max of the image brightness; for the

description of display above, these would be min and max. Set crange=[min, max].

2. If you raised the data to a power (gamma) to change the contrast, then you need to tell

colorbar by setting cgamma = gamma. If you didn’t use gamma on the data, then set cgamma=1

or leave it undefined.

6Normalized coordinates range from 0 to 1 and are the fraction of the size of the window.

– 14 –

3. Define the name of the displayed quantity, e.g. xtitle=’Xray intensity’.

4. Then make the colorbar:

colorbar, POSITION=position, CRANGE=crange, CGAMMA=cgamma, $

NEGATIVE=negative, VERTICAL=vertical, XTITLE=xtitle

For more info on colorbar parameters, see its documentation.

9.2. A 2d Colorbar

The easiest way to make a 2d image with its colorbar is with our display 2d.pro; this does

everything with one procedure call, but not much flexiblity. See §10 and, for an example, see the

appendices in our tutorial “1d2d3d: One, Two, and Three Dimensional Color Images”.

If you want to do it all yourself:

1. For a 2d image you need to specify the min and max for both the color image (cmin, cmax)

and the intensity image (imin, imax). These min/max values are specified as 2-element

vectors. So for the color image, it’s crange= [cmin, cmax] and for the intensity image it’s

irange= [imin, imax]. Similarly, each image has its own gamma (the power to which the

data numbers are raised): cgamma and igamma. It should be obvious that these gamma values

should correspond to what you used when you displayed the image. The titles on the colorbar

are xtitle (the name of the variable that represents color, e.g. velocity) and ytitle.

2. For a 2d color image and colorbar you are using a 256-entry colortable to define the colors.

The 256 (r,g,b) intensities are represented with a 256 × 3 array called colr. If you use the

physiologically-correct colortable discussed in the handout “1d2d3d: One, Two, and Three

Dimensional Color Images”, then you get this array from the procedure pseudo ch, colr.

We assume this in our example just below; if you get colr in another way, you still need to

loadct,0 before calling colorbar.

3. Finally, invoke the colorbar procedure:

pseudo_ch, colr

loadct,0

colorbar, POSITION=position, RGB=colr, $

CRANGE=crange, IRANGE=irange, CGAMMA=cgamma, IGAMMA=igamma, $

NEGATIVE=negative, VERTICAL=vertical, $

XTITLE=xtitle, YTITLE=ytitle

– 15 –

N.B. Any of the keywords that you can send to plot are also accepted by display and colorbar.

As an example, sometimes it’s easier to see tickmarks on an image and on a colorbar if they are

pointing outwards; this could be accomplished by passing the keyword ticklen=-0.02 to both

display and colorbar.

10. USING display 2d FOR 2D IMAGES

For an example, see the appendices in our tutorial “1d2d3d: One, Two, and Three Dimensional

Color Images”.

This is a quick and easy way to make a 2d image with a colorbar. It is well-enough documented.

A restriction is that the colorbar is always on top. The only tricky part of using this is making the

image and colorbar fit into the window in a nice way. This fit is controlled mainly by the window

size, and also by cbar posn, which is the four-element vector that specifies the colorbar placement

in normalized coordinates. Usually you can just adjust that window size and use the default for

cbar posn, which is automatically set if you don’t specify it.

Controlling the window size on the X window is a matter of specifying its size in pixels. For

example, when you open a window, say number 5, you type window, 5, xsize=800, ysize=600

(for an 800 × 600 window). For a PS window, you control the size with the xsize and ysize

parameters in the psopen command.

11. USING rgbimg FOR 3D COLOR IMAGES

We have a clumsily-written but reliable procedure to produce a 3d image with a fancy colorbar

like those of Figure 6 in the handout “1d2d3d: One, Two, and Three Dimensional Color Images”.

A severe restriction is that the image must have dimensions 541 × 541; you can use congrid to

convert your image to this size (but see the cautions about congrid in in the handout “1d2d3d:

One, Two, and Three Dimensional Color Images”). The procedure is called rgbimg.pro and it is

reasonably well-documented.

It is a pleasure to thank Tim Robishaw for teaching me a lot, providing software, and con-

structive comments.

