
QUICK IDL TUTORIAL NUMBER TWO: IDL DATATYPES AND

ORGANIZATIONAL STRUCTURES

January 24, 2017

Contents

1 DATATYPES 2

1.1 DIGITS, BITS, BYTES, AND WORDS . 2

1.2 INTEGER DATATYPES IN IDL . 3

1.2.1 1 byte: The Byte Datatype . 3

1.2.2 2 bytes: Integers and Unsigned Integers . 3

1.2.3 4 bytes: Long Integers and Unsigned Long Integers 4

1.2.4 8 bytes: 64-bit Long Integers and Unsigned 64-bit Long Integers 4

1.3 FLOATING DATATYPES IN IDL . 4

1.3.1 4 bytes: Floats . 4

1.3.2 8 bytes: Double-Precision . 5

1.4 COMPLEX NUMBERS . 5

1.5 ILLEGAL NUMBERS . 5

1.6 STRINGS . 6

2 ORGANIZATIONAL STRUCTURES 6

2.1 SCALARS . 6

2.2 VECTORS . 6

2.3 ARRAYS . 7

2.4 MATRICES . 8

2.5 STRUCTURES . 9

2.5.1 Anonymous Structures . 9

2.5.2 Named Structures . 10

2.5.3 Arrays of Structures . 11

– 2 –

3 APPENDIX: HOW FLOATING-POINT NUMBERS ARE STORED IN COM-

PUTERS 12

3.1 The 32-bit IEEE standard . 12

3.2 The routine machar . 12

By the term datatype we mean, for example, integers, floating point variables, strings, complex

numbers. By the term organizational structures we mean scalars, vectors, arrays, and structures.

We cover these in the following sections. All available datatypes can be arranged in all available

organizational structures. For example, we can have arrays of strings, vectors of complex numbers.

1. DATATYPES

Here we cover only the basic IDL datatypes. There are others, including unsigned integers and

complex numbers.

1.1. DIGITS, BITS, BYTES, AND WORDS

We have gotten to the place where you need to know a little about the internal workings of

computers. Specifically, how the computer stores numbers and characters.

Humans think of numbers expressed in powers-of-ten, or decimal numbers. This means that

there are 10 digits (0 → 9) and you begin counting with these digits. When you reach the highest

number expressible by a single digit, you use two digits and generate the next series of numbers,

10 → 99. Let f and s be the first (1) and second (0) digits, respectively; then the number is

f ∗ 101 + s ∗ 100. And so on with more digits.

Fundamentally, all computer information is stored in the form of binary numbers, meaning

powers-of-two. How many digits? Two! They are 0 and 1. The highest number expressible by a

single digit is 1. The two-digit numbers range from 10 to 11; the number is f ∗ 21 + s ∗ 20. And

so on with more digits. But wait a minute! The word “digit” is a misnomer—it implies something

about 10 fingers. Here it’s the word bit that counts. Each binary “digit” is really a bit. So the

binary number 1001 is a 4-bit number. What decimal number does the binary number 1001 equal?

For convenience, computers and their programmers group the bits into groups of eight. Each

group of 8 bits is called a byte. Consider, then, the binary number 11111111; it’s the maximum-

sized number that can be stored in a byte. What is this number?

Finally, computers group the bytes into words. The oldest PC’s dealt with 8-bit words—one

byte. Many present-day PCs use 32-bit words—four bytes. Macs and the more capable PCs deal

with 64-bit words—8 bytes. What’s the largest number you can store in a 4-byte word? And how

– 3 –

about negative numbers?

Below we describe how IDL (and everybody else) gets around this apparent upper limit on

numbers. They do this by defining different data types. Up to now, the details didn’t matter

much. But now. . .We don’t cover all datatypes below—specifically, we omit Complex (yes, complex

numbers!), Hexadecimal, Octal; you can look these up if you are interested.

1.2. INTEGER DATATYPES IN IDL

Integer datatypes store the numbers just like you’d expect. IDL supports integers of four

different lengths: 1, 2, 4, and 8 bytes. The shorter the word, the less memory required; the longer

the word, the larger the numbers can be. Different requirements require different compromises.

1.2.1. 1 byte: The Byte Datatype

The Byte datatype is a single byte long and always positive. Therefore, its values run 0 → 255.

The byte datatype isn’t all that useful for general computation, but it serves two essential purposes

inside your computer:

1. Images are always represented in bytes. The data might not be in bytes, but the numbers

that the computer sends to the video processor card are always bytes. Video screens require

lots of memory and really quick processing speed, so bytes are ideal. When you write an

image to the screen, which is done with the tv command in IDL, you send a 2-d array—and

those numbers must be bytes. Usually your image is calculated as floats (ordinary numbers

with decimal points; see §1.3 below); convert these to bytes using IDL’s bytscl command.

2. Characters (like the string variable ‘a’) are represented as bytes. This means that computers

only have 255 chacters that can be used in string variables (see §1.6 below).

You can generate a byte array using bindgen; you can generate a single byte variable by

saying x=3b. If, during a calculation, a byte number exceeds 255, then it will “wrap around”; for

example, 256 wraps to 0, 257 to 1, etc.

1.2.2. 2 bytes: Integers and Unsigned Integers

With 2 bytes, numbers that are always positive are called Unsigned Integers. They can

range from 0 → 2562 − 1, or 0 → 65535. You generate an array using uindgen. How do you think

unsigned integers wrap around?

– 4 –

Normally you want the possibility of negative numbers and you use Integers. The total

number of integer values is 2562 = 65336 (= 2 · 32768). One possible value is, of course, zero. So

the number of negative and positive values differ by one. The choice is to favor negative numbers,

so Integers cover the range −32768 → 32767. You generate an array using indgen. What happens

with wraparound? What if x=5, y=30000 and z=x*y? Check it out!

1.2.3. 4 bytes: Long Integers and Unsigned Long Integers

The discussion here is exactly like that for 2-byte integers, except that 2562 becomes 2564.

What are the limits on these numbers? See IDL help under “Data Types” and “Integer Constants”

for more information. You generate arrays using ulindgen and lindgen.

1.2.4. 8 bytes: 64-bit Long Integers and Unsigned 64-bit Long Integers

The discussion here is exactly like that for 2-byte integers, except that 2562 becomes 2568.

What are the limits on these numbers? See IDL help under “Data Types” and “Integer Constants”

for more information. You generate arrays using ul64indgen and l64indgen.

1.3. FLOATING DATATYPES IN IDL

The problem with integer datatypes is that you can’t represent anything other than integral

numbers—no fractions! Moreover, if you divide two integer numbers and the result should frac-

tional, but it won’t be; instead, it will be rounded down (e.g. 5

3
is calculated as 1). To get around

this, the floating datatype uses some of the bits to store an exponent, which may be positive or

negative. You throw away some of the precision of the integer representation in favor of being able

to represent a much wider range of numbers.

1.3.1. 4 bytes: Floats

“Floating point” means floating decimal point—it can wash all around. With Floats, the

exponent can range from about −38 → +38 and there is about 6 digits of precision. You generate an

array using findgen and a single variable by including a decimal point (x=3.) or using exponential

notation (x=3e5).

Printing floating point numbers to the full native precision, instead of what IDL regards as

“convenient”, requires using a format statement in the print (or, when annotating a plot, the

xyouts) command. For example:

– 5 –

a= 1.23456789

print, a, format=’(f20.10)’

prints out 10 decimal points and 20 characters including the decimal point. Of course, we’ve defined

a to higher precision than single-precision float carries, so the last bunch of numbers beyond the

decimal won’t be correct. To make that happen, you need. . .

1.3.2. 8 bytes: Double-Precision

Like Float, but the exponent can range from about −307 → +307 and there is about 16 digits

of precision. You generate an array using dindgen and a single variable by writing x=3d or

x=3d5. Then, when you do the following, it works:

a= 1.23456789d0

print, a, format=’(f20.10)’

xyouts, xloc, yloc, string(a, format=’(f20.10)’)

For annotating a plot with xyouts, you explicitly convert the number to a string of the specified

format; the print statement does this too, but it’s transparent because it automatically does it for

you.

1.4. COMPLEX NUMBERS

A complex number C consists of a pair of real numbers, one the real and one the imaginary part

[in IDL: real part(C) and imaginary(C)]. The two numbers are always floats and can be either

single- or double-precision. You generate a single-precision complex number (2.2 + i3.9) with: C

= complex(2.2, 3.9) and a double-precision one with dcomplex. The arguments can be arrays,

giving you a complex-number array. There are also the complex analogues cindgen and dcindgen

(like findgen and dindgen); and complexarr and dcomplexarr (like fltarr and dblarr).

1.5. ILLEGAL NUMBERS

As we’ve seen, there are limits to the size of digitally-stored numbers. IDL follows the IEEE

standard when calculations produce out-of-bound numbers:

1. A floating-point number that exceeds the upper limit is printed out as the string Inf (but it

is stored as a float).

– 6 –

2. A float that is smaller than the lower limit is returned as zero and the statement “Pro-

gram caused arithmetic error: Floating underflow” is written on the screen (unless the error

reporting is suppressed).

3. An illegal number, such as (−2)1/2, is printed out as the string NaN (but it is stored as a

float).

4. An integer number that exceeds either limit does not generate an illegal number; rather, it

“wraps around”.

Some IDL routines, such as the plot routine, ignore illegal numbers. Generally, however, you

need a way to deal with these illegal numbers—for example, so that you can exclude them from

subsequent mathematical operations. You do this with the finite command.

1.6. STRINGS

Strings store characters—letters, symbols, and numbers (but numbers as characters—you can’t

calculate with strings! A string constant such as hello consists of five letters. It takes 5 bytes to

store this constant—one byte for each character. There are 256 possible characters for each of the

bytes; with 2*26 letters (smalls and caps) and 10 digits, this leaves 104 other possibilities, which

are used for things like semicolons and periods. You can generate an array of strings with strarr

and a single string with x = ’Hi there!!!’.

Characters are represnted by byte numbers. You can easily find the byte number for a particu-

lar character in IDL; for example, to find the byte number that represents the semicolon character,

type print, byte(’;’). The answer: 59b. Similarly, to find the string variable represnted by the

byte number 59b, type print, string(59b). Quick—what’s the answer?

2. ORGANIZATIONAL STRUCTURES

2.1. SCALARS

A scalar is just a single number. For example, a string scalar is joename= ’joe’.

2.2. VECTORS

A vector is a one-dimensional array. For example, a three-element vector of names is three-

names = [’joe’, ’ivan’, ’mark’].

– 7 –

2.3. ARRAYS

IDL handles arrays up to 8 dimensions, i.e. with 8 subscripts. Arrays with two subscripts can

be mathematically treated a matrices using the # and ## operators, and various matrix manip-

ulation routines; see IDL help under matrices and matrix operators. You create vectors and

arrays using, for example, the fltarr or findgen commands (for floating point numbers; equivalent

commands exists for all variable types). You populate them as appropriate, but try to avoid using

for loops; instead, use where, appropriate use of the * operator, etc.

IDL provides a great deal of flexibility in using subscripts to address particular array elements,

and this flexibility is what makes IDL so useful. For example, consider a one-dimensional array

a=findgen(100). Then:

b = a[0]

sets b equal to the first element in a;

b = a[23]

sets b equal to a[23], which is the 24th element in a;

b = a[-1]

sets b equal to the last element in a.

For two-dimensional array a=findgen(100, 100):

b = a[23:25, 67:69]

makes b a 3× 3 2-d array equal to a’s array elements in the little box specified. The combination

indx = where(a gt 10.)

b = a[indx]

makes b a 1-d array equal to the elements of a that are larger than 10. The combination

indx = where(a gt 10.)

jndx = where(a[indx] le 100.)

b = a[indx[jndx]]

shows that you can subscript arrays with other arrays, and makes b equal to a 1-d array equal to

the elements of a that are both larger than 10 and less than or equal to 100.

– 8 –

2.4. MATRICES

A matrix is just one step away from a 2-d array. IDL provides all of the standard, and many

sophisticated and advanced matrix, operations. To multiply two matrices you use the # operator.

Thus, the matrix product C of two matrices A and B is C = A # # B—or C = A # B depending

on. . . a tricky little point about matrices having to do with row-major or column-major formats.

In a computer, a multidimensional data set can be indexed in two ways, the column-major and

row-major formats. IDL uses the row-major format, as does Fortran; the other major language, C,

uses column-major. Suppose you have a 2× 2 matrix called A. In IDL’s row-major format, when

you type [print, A] IDL prints

[

A0,0 A1,0

A0,1 A1,1

]

, (1a)

which is different from (i.e., it’s the transpose of) what you are used to seeing in standard matrix

notation which is the column-major format

[

A0,0 A0,1

A1,0 A1,1

]

. (1b)

We use the row-major convention such that when displayed in a standard IDL print statement,

they look correct. That means that our definition is the transpose of the standard one.

There are some matrix operations for which the difference is important. This includes not

only multiplication, but also some other operations such as invert and svsol. IDL almost always

assumes that the inputs to these other operations follow our row-major convention.

If you want to be a purist and define the matrices in the standard column-major manner, then

go ahead and do so. You then need to do three things. First, if you want to see the matrix displayed

in the usual way, then print its transpose by typing [print, transpose(A)]. Second, in all our IDL

matrix equations, replace ## by #. Third, check any IDL procedure having a matrix as input to

see what it assumes (The default is almost always row-major).

To be specific: if you follow our row-major convention, which is the transpose of the standard

one, then the matrix product must be written

C = A ## B (2a)

while, in contrast, if you follow the standard column-major one then you must write

– 9 –

C = A # B (2b)

Why does IDL do this nonstandard thing? It’s because it’s more straightforward for image

processing, in which traditionally the images are scanned row-by-row (as in a TV set) instead of

column-by-column. And IDL’s origins are image processing, not matrix math. You might find

IDL’s convention annoying when you’re doing matrix math, but this is more than compensated for

by the intuitive feel you gain when doing image processing.

2.5. STRUCTURES

Structures are immensely useful for any project in which data of different types are related.

For example, if you have a catalog of stars with positions and reddenings, you can put the whole

catalog in a structure array in which each element of the array contains many quantities such as

the name and position. And you can have arrays of structures. Structures allow you to create and

customize your own data base. Having done this, using the where command allows you flexible

access to anything with a one-line command.

We refer you to Chapter 7 of Building IDL Applications for a complete discussion of structures.

Here we provide a quick example. There are two types of structure, anonymous and named. In our

experience, anonymous structures are usually preferred.

2.5.1. Anonymous Structures

Our abovementioned star catalog has several different data elements. We group them all into a

structure; each data element is called a tag. Let’s call the structure A. Then we define the structure

tags with the statement

A = {name: ’alpha ori’, ra:5.3345, dec:-7.6568,reddening:fltarr(12)}

Now if you type help,/struct,a or help,/st,a, you will see on the screen

** Structure <752268>, 4 tags, length=72, data length=72, refs=1:

NAME STRING ’alpha ori’

RA FLOAT 5.33450

DEC FLOAT -7.65680

REDDENING FLOAT Array[12]

– 10 –

The number <752268> is arbitrary and will change from one anonymous structure to the next. The

fact that a number appears instead of a name means that a is an anonymous structure. It has four

tags: the name, the two positions, and 12 different measurements of reddening. In IDL you refer

to a particular tag, e.g. dec, by typing a.dec:

print, a.dec

You could change things by typing

a.dec = 5.5

a.reddening[3] = 0.7

Or you could could populate the 12 reddening measurements by typing, for example,

a.reddening = [1.2, 1.4, 1.3, 1.6, 1.3, 1.4, 1.3, 1.3, 1.6, 1.3, 1.4, 1.3,]

You can redefine the tag names and number of tags in an anonymous structure—but not for

a named structure. . .

2.5.2. Named Structures

You can also create a named structure by including the name (here the name is “star”):

b = {star, name: ’alpha ori’, ra:5.3345, dec:-7.6568, reddening:fltarr(12)}

Now if you type help, b, /str you see

** Structure STAR, 4 tags, length=72, data length=72:

NAME STRING ’alpha ori’

RA FLOAT 5.33450

DEC FLOAT -7.65680

REDDENING FLOAT Array[12]

This says that the structure B is a named structure with name defined as star. We defined it to

have the same tags as our anonymous structure A above. In contrast to an anonymous structure,

Once a named structure is defined, you cannot change the names of the tags or the number of tags.

– 11 –

2.5.3. Arrays of Structures

If this were all, then structures wouldn’t be very useful because you have observed 585 stars,

say, and you’d need a separate structure for each. But you can create arrays of structures, e.g. for

an anonymous structure we create the array cataloga

cataloga = replicate(a, 585)

and for our named structure we create the array catalogb

catalogb = replicate({star}, 585) [OR catalogb = replicate(b, 585)]

These statements create structure arrays of 585 elements. If you type help, cataloga IDL tells

you this fact by printing on the screen

CATALOGA STRUCT = -> <Anonymous> Array[585]

and if you add the structure keyword (typing help, cataloga, /st) you get, as above,

** Structure <752268>, 4 tags, length=72, data length=72, refs=2:

NAME STRING ’alpha ori’

RA FLOAT 5.33450

DEC FLOAT -7.65680

REDDENING FLOAT Array[12]

You refer to particular elements of the array in the usual way, i.e. with an index number, but the

index number comes directly after the array name, like this:

print, catalog[3].ra

print, catalog[3].reddening[5]

cataloga[3] = a

Or you can set values within a structure, for example

cataloga[3].name = ’carl heiles’

Try using structures when taking data for your experiments. You’ll grow to love them!

– 12 –

3. APPENDIX: HOW FLOATING-POINT NUMBERS ARE STORED IN

COMPUTERS

3.1. The 32-bit IEEE standard

Here we describe the 32-bit word case and assume the IEEE convention; see Numerical Recipes,

§20.1, for more complete information. 24 bits are reserved for the mantissa and 8 for the exponent.

Each reserves one bit for the sign, leaving 23 and 7 bits for numbers.

1. For the exponent, the the maxima and minimum numbers are ±27 = ±128—or more ac-

curately, –128 to +127. This exponent applies to a binary number; converting to decimal,

we have 2128 ≈ 1.7 × 1038. Roughly, this is the maximum number that can be stored as a

single-precision float.

2. For the mantissa, the maximum and minimum numbers are ±223 ≈ 107. This means that

the fractional error in a stored number is about 10−7. As you do more and more calculations,

using the results of one in the next, this fractional error increasees.

3. For double precision, the maximum number is about 10308 and the precision is about 10−16.

3.2. The routine machar

The IDL routine machar, derived from the Numerical Recipes routine of the same name, returns

a structure that contains all the above information.

