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1. INTRODUCTION

The cosmic radiation that we measure differs from radiation produced by humankind.

Humankind’s transmitters usually produce radiation at specific frequencies; this radiation is

modulated with an information-containing signal of some sort, such as rap music (here we

use the term “information” loosely). In contrast, cosmic radiation is not produced by slow

modulation of a carrier frequency with an information-containing signal generated by an

intelligent being. Rather, cosmic radiation is produced by random processes, of which there

are three common types: collisions between electrons and protons in a gas at temperature T ;

spiraling of relativistic electrons in a magnetic field; and transitions between energy levels of

an atom or molecule. The former two generate radiation over a wide spectrum of frequencies

while the latter generates a narrow spectrum called a spectral line. The radiation from the

former two is called continuum radiation because its frequency spectrum is very broad and

featureless. For these random processes, we can describe the spectrum as a sum of Fourier

components; all frequency components in a small bandwidth have comparable power and

random electrical phases, and the total power varies with frequency to give the spectrum we

observe.

Continuum radiation is produced by all astronomical objects. For example, stars pro-

duce continuum radiation that is strongest at optical or IR frequencies. Galaxies and clouds

of hot gas also produce optical and IR continuum radiation. They also produce continuum

radiation at radio frequencies, and this is usually much less intense than the optical con-

tinuum radiation. Some sources have relativistic electrons, and these sometimes produce

powerful radiation at radio, X-ray, and gamma-ray frequencies.
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2. SPECIFIC INTENSITY

In the above paragraph we compared radio and optical continuum radiation by their

intensities, and indeed the intensity is one of the two basic properties of continuum radiation.

The other is the direction from which it comes. But this concept of direction needs a bit of

elaboration: all sources occupy a finite solid angle, and thus a range of directions. There is

no such thing as a true point source!

For example, the Sun is 0.5◦ in diameter and occupies a solid angle of 0.79 deg2. The

Sun moves across the sky, so it has a direction. We need to combine these two properties—

intensity, size, and direction—to obtain a general quantity with which we can characterize a

source of light.

This general quantity is called the specific intensity, always denoted by the symbol I(ν).

This has units of (are you ready?)

units of I(ν) = J s−1 m−2 Hz−1 ster−1 (1a)

or

units of I(ν) = Watts m−2 Hz−1 ster−1 (1b)

or, in my favorite units

units of I(ν) = ergs s−1 cm−2 Hz−1 ster−1 (1c)

In these equations, the area (m2 or cm2) is the area of the receiving surface, which in our

case is a telescope. Moreover, it is also clear that I(ν) is a function of direction; we’ve not

written this above to keep things simpler, but for a complete specification we need to include

this directional dependence. In astronomy, we usually specify the direction in terms of right

ascension and declination (ra, dec) or (α, δ), so we need to write

I(ν, α, δ) (1d)

for the complete specification.

2.1. Specific Intensity: the same as angular surface brightness

The fundamental point: specific intensity tells the power coming from each little solid

angle of the source. Think of it as angular surface brightness. When we make an image

(or map) of a source, such as the Sun or a galaxy, it’s like a photograph. This image is

an image of specific intensity—or angular surface brightness—at a particular frequency (or,
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more properly, over a range of frequencies centered at a particular frequency). An image

tells you nothing about the power per unit linear surface area; rather, it tells you about the

power per angular surface area.

When discussing angular surface brightness it’s most familiar to think of an optical

image. When we make that image, for example in the optical by taking a CCD image, we

collect energy from the source to move those electrons around. CCD’s have lots of little

pixels. The amount of energy collected by each pixel is

dE(ν) = I(ν) dA dν dt dΩ, (2)

Here, I(ν) is the specific intensity, dA is the area of the pixel, dν is the bandwidth (which

is usually determined by a filter, say a red filter, in front of the CCD), and dΩ is the solid

angle on the sky seen by that pixel. Of these quantities, dΩ is the hardest to understand

because it depends on the focal ratio of the telescope; a “fast” telescope with a low focal

ratio has each pixel seeing a large solid angle, so the pixel collects lots of energy compared

to the case of a large focal ratio. If you’re into photography, you’re familiar with all this.

3. A FUNDAMENTAL THEOREM: SPECIFIC INTENSITY IS

CONSTANT ALONG A RAY PATH(!)

An important, and surprising, and counterintuitive theorem: the specific intensity is

constant along a ray path! One can prove this with elegant mathematical formalism, but

let’s consider two simple cases. First, however, note that we talk about a “ray path”. Talking

about ray paths means, implicitly, that wavelengths are short so that diffraction plays no

role. Thus this theorem hold only when angular sizes are much larger than λ
D
.

3.1. Case 1: The Sun

Remarkably, I(ν) is independent of distance of an object! Consider the Sun as an

example. Each square meter of the Sun’s surface emits some amount of power. As we

move further away in distance D, that power becomes diluted by the geometrical factor 1
D2 .

However, the number of square meters in a steradian increases as D2. Because I(ν) specifies

the power per steradian, the distance D cancels out!
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3.2. Case 2: Specific intensity at the telescope focal plane is the same as at

the source!

Suppose you observe the Sun with a telescope. The specific intensity at the focal plane

of the telescope, Ifp, is identical to that at the Solar surface I⊙!
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Fig. 1.— Observing the Sun with a telescope, illustrating that the specific intensity I is unchanged along

a ray path.

Look at Figure 1, which exhibits a simple optical telescope with a lens. The lens has

focal length d, so the focal plane (fp) is separated from the lens by distance d, and the lens

occupies solid angle Ωlens =
πR2

lens

d2
as seen from the fp. Similarly, the Sun lies distance D

from the lens and occupies solid angle Ω⊙ =
πR2

⊙

D2 as from the lens. The area of the Sun on

the focal plane is A⊙ = πR2
⊙

d2

D2 .

As we determined above, the specific intensity at the lens Ilens is equal to that at the

Sun’s surface I⊙. Thus the total power picked up by the lens is this specific intensity times

the lens area times the solid angle of the Sun, i.e.

P = I⊙(πR
2
lens)Ω⊙ (3)

All of this power goes to the image on the focal plane. The specific intensity at the fp is this

power P divided by the product (the area of the image times the solid angle of the lens), i.e.

Ifp =
P

(

πR2
⊙

d2

D2

)

(

πR2

lens

d2

) (4)

Plug equation 3 into this and all factors cancel, leaving

Ifp = I⊙ (!) (5)

Again, we reiterate that there is one assumption here, namely that diffraction plays no role—

i.e. that the telescope easily resolves the source in angle. For our radio telescope observing

the Sun, this would require the telescope beam size ≪ the angular size of the Sun.
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4. SPECIFIC INTENSITY: ITS EQUATION, AND BRIGHTNESS

TEMPERATURE

4.1. The Equation of Transfer for Specific Intensity

OK, so the specific intensity doesn’t depend on distance. What does it depend on?

Enter the famous equation of transfer,

dI

ds
= ǫ− κI (6)

where s is distance along the ray path towards the observer, ǫ is the emission coefficient,

and κ is the absorption coefficient. We usually write the equation of transfer in terms of the

optical depth, τ = κds, so it becomes

dI

dτ
=

ǫ

κ
− I (7)

4.2. Blackbody Radiation and Brightness Temperature

Thermal emission processes are those for which the emission and absorption coefficients

depend only on temperature T , and for those processes the coefficient ratio equals the usual

formula for blackbody emission, known as Planck’s law:

Iblackbody =
ǫ

κ
= Bν(T ) =

2hν3

c2
1

ehν/kT − 1
. (8)

Many emission processes, such as synchrotron emission and maser emission, are not thermal,

so this is definitely a special—but important—case.

In radio astronomy we usually have hν
kT

≪ 1, which means the Rayleigh-Jeans approxi-

mation applies and the complicated Planck law reduces to

B(ν)(T ) = 2kT
c2

ν2
=

2kT

λ2
(9)

More generally, for any specific intensity I we can pretend it comes from a blackbody at

temperature TB and write

I(ν) = 2kTB
c2

ν2
=

2kTB

λ2
(10)
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4.3. Brightness temperature

The units of I(ν) are long and complicated: Watts m−2 Hz−1 ster−1. Radio astronomers—

being as lazy as anyone else—notice the direct proportionality between I(ν) and TB and

prefer to use TB in place of I(ν), with its simpler units of Kelvins. Thus, instead of angular

surface brightness or specific intensity, radio astronomers speak of the brightness temperature

of an object and denote it by the symbol TB. We then express the equation of transfer in

terms of TB instead of I. For thermal emission of matter at temperature T , this gives

dTB

dτ
= T − TB (11)

It’s very useful to write the solution for the simplest case, which is a uniform lab of emitting

material having temperature T and optical depth τ—for example, a cloud of interstellar

hydrogen emitting the 21-cm line:

TB = T [1− exp(−τ)] (12)

which becomes, at the two extremes of low and high τ :

TB =

{

Tτ , τ ≪ 1

T , τ → ∞ (13)

This shows that we recover the ‘blackbody’ case of TB = T for large τ , and for small τ the

intensity is linearly proportional to the thickness τ .

What’s the brightness temperature of the Sun? At optical wavelengths it’s just about

equal to the surface temperature, i.e. TB ∼ 6000 K. At radio wavelengths it happens to

be higher because radio telescopes see the Sun’s coronal gas, which is much hotter—in the

millions of Kelvins—and optically thin, so it’s not too bright. Radio telescopes also see

synchrotron radiation, and sometimes cyclotron radiation, from sunspots and flares.

5. BRIGHTNESS TEMPERATURE AND ANTENNA TEMPERATURE.

In the discussion relevant to equation 2, we referred to a CCD and its pixels. Let us

rewrite equation 2 using the Rayleigh-Jeans approximation—which makes it specific to radio

astronomy. Each pixel collects a power per Hz P (ν) equal to

P (ν) =
2kTB(ν)

λ2
dA dΩ (14)
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Now consider what a “pixel” is for a diffraction-limited system as we have in radio astronomy.

The pixel is the “feed”, which has area dA and responds to solid angle dΩ; in a well-engineered

system, the primary mirror occupies the same solid angle dΩ. With any diffraction-limited

telescope, including the feed (which can be considered as just another telescope), these are

related: the diffraction angle θ ∝ λ
size

, so the solid angle Ω ∝ λ2

area
. It so happens that the

proportionality constant is unity, Ω = λ2

area
(see §6 for more elaboration). Thus above, in

equation 14, the product (dA dΩ) is equal to λ2. The factor λ2 appears in both the numerator

and denominator, so equation 14 reduces to

P (ν) = 2kTB(ν) (15)

Now we do the same trick that we did in §4.3 for brightness temperature. Namely, we realize

that radio astronomers are lazy and that the units of P (ν) are cumbersome [but not so much

as I(ν)!]. Then we simply write

2kTA(ν) = P (ν) (16)

which allows us to write the simple, and physically meaningful equation

TA(ν) = TB(ν) (17)

This equation is physically meaningful because the antenna temperature—the power per Hz

picked up from the source—is equal to the brightness temperature of the source! With one

caveat: we have implicitly assumed that the source solid angle, when projected onto the focal

plane, is larger than the area of the feed. This is equivalent to assuming that the telescope

resolves the source, i.e. that the angular size of the source exceeds the telescope beamwidth

on the sky.

5.1. Antenna temperature for an unresolved source

A telescope (in radio astronomical parlance, an “antenna”) picks up a certain fraction

of brightness of the source, producing the antenna temperature TA. If a blackbody source at

temperature TB fills the solid angle of the antenna beam, then section 5 applies and TA = TB.

If the source is smaller than the antenna beam, then some of the beam sees the cold

sky that lies outside the boundaries of the source. In this case we clearly have TA < TB. To

be a bit more quantitative, if the source has solid angle Ωs and the antenna beam Ωb, then

the antenna temperature is

TA ≈ TB
Ωs

Ωb + Ωs

(18)

In other words, if the source is tiny, TA ≪ TB; as the source gets larger, TA increases to the

upper limit TB. These solid angles are a bit ill-defined, which accounts for the ≈.
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With this equation, we see that if a source is “fully resolved” with Ωb ≪ Ωs, then the

antenna temperature is equal to the brightness temperature and we can make a high-fidelity

map of the radio angular surface brightness. If the source is not fully resolved, the angular

surface brightness variations within our map are reduced by the convolving effect of the

beam with the source.

6. FLUX DENSITY

The total output of the Sun is large. That is, its apparent luminosity or flux density is

large. The flux density S(ν) is equal to the integral of the angular surface brightness over the

solid angle is large. The total power density from the whole source incident on the telescope

is just

S(ν) =

∫

I(ν)dΩ =
2k

∫

TBdΩ

λ2
, (19)

The units of S(ν) are Watts m−2 Hz−1.

Again, to avoid these complicated units, radio astronomers replace this with the Jansky,

which is equal to 10−26 Watts m−2 Hz−1. The strongest radio source in the sky, other than

the Sun, is the ∼ 300-yr old supernova remnant Cas A, with S ∼ 2000 Jy. There are a few

hundred sources with S & 1 Jy, and uncounted numbers at weaker fluxes. With modern

telescopes, it is almost trivial to measure fluxes at the 1 mJy level.

6.1. Flux Density and antenna temperature.

For a source whose brightness temperature TB is constant over a finite solid angle Ωs,

we can remove the integral sign from equation (19) and write. . .

S(ν) = I(ν)Ωs =
2kTBΩs

λ2
, (20)

or

TBΩs =
λ2

2k
S(ν) (21)

Further, if Ωs ≪ Ωb then we can plug this into equation (18) and write. . .

kTA =

[

λ2

Ωb

]

S(ν)

2
(22)

Now, this is an interesting equation. Look at the factor in square brackets: the numerator

and denominator are proportional to each other—with the proportionality constant equal to
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the telescope area! The telescope beam solid angle Ωb ∝ beamwidth2 ∝ ( λ
2R
)2, where R is

the telescope radius. In fact, as it turns out, it happens to be an exact, fundamental result

of electromagnetic theory that

Ωb =
λ2

πR2
(23)

This is for a circular aperture; for an aperture of arbitrary shape and area A, it is more

generally true that. . .

Ωb =
λ2

A
(24)

Plugging this into equation 22, we get

kTA =
S(ν)A

2
(25)

In words: The total power per Hz intercepted by the antenna is S(ν)A
2

(think of the radio

photons like raindrops falling on the telescope). Also, kT is the power per Hz available from

a resistor at temperature T (as we discuss in §7). So the antenna temperature is just what

you’d expect—it’s equal to the power per Hz collected by the telescope.

Wait a minute! What about the factor of 1
2
? That’s because of polarization. There are

two orthogonal polarizations, each containing half the power. Our equations refer to only

a single polarization, which picks up only half the total power1. If we had a dual-polarized

system then each channel would have the above antenna temperature, and the combination

gives the full power per Hz from the source.

7. RELATIONSHIP BETWEEN THE POWER FROM A RESISTIVE

LOAD AND A BLACKBODY.

We can derive this relationship in two different ways. The complicated way involves

using statistical mechanics. The simple way involves a thermodynamical argument, in which

the complications of statistical mechanics have been incorporated into the concepts of ther-

modynamical equilibrium. We, of course, use the simple way.

Imagine an antenna immersed in a blackbody cavity of temperature TB, as in figure 2.

We saw above in §5 that TA = TB, and specifically from equation 15 and ensuing discussion

that each polarization picks up power P = kTB erg sec−1 Hz−1.

1This applies if the source is unpolarized. If it is polarized, then the power doesn’t split equally between

the two polarizations.
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50 OHM COAX

50 OHMS

TELESCOPE

BLACKBODY: T=TBBLACKBODY: T=TBBLACKBODY: T=TB

Fig. 2.— A perfectly matched telescope and load, each in its own blackbody cavity; the cavities are at the

same temperature.

Using a coax cable, connect one polarization channel to a matched resistive load that

resides in a second blackbody cavity at the same temperature TB, which happens to be equal

to TB; obviously, the load is also at temperature TB. The load, being perfectly matched,

absorbs all the power collected by the antenna.

Thus power P will be transferred to this second cavity from the first cavity. However,

thermodynamics says that this is impossible, because the two cavities have identical tem-

peratures. Therefore the resistor must also send the same amount of power to the antenna.

Thus, the power available from the resistor is also P = kT∆ν erg sec−1 Hz−1.

Summary: A load at temperature T generates the same amount of power in an electrical

circuit that a well-matched antenna absorbs from a blackbody cavity at temperature T . That

is, it generates P = kT∆ν Watts Hz−1 (or erg s−1 Hz−1).

8. RECEIVER TEMPERATURE, SYSTEM TEMPERATURE

The power received by a radio telescope is exceedingly small, and to detect it we must

amplify by about 100 db. With this large amplification, internal noise in the system is also

amplified. This internal noise is called receiver noise and is equivalent in all respects to

the radiation coming in from the sky: it is continuum in nature and generated by random

processes. It is convenient to measure it with the same units as the celestial radiation,

namely temperature. So we specify the receiver noise as the receiver temperature, denoted

by the symbol TR. Just as for any thermal noise source, the noise power is P = kT∆ν (see

§ 7).

In a well-designed system, all of the receiver noise is generated in the first amplifier. The

receiver temperature TR is not the physical temperature of the amplifier. Modern amplifiers

have receiver temperatures that are much smaller than the actual physical temperatures.

However, their receiver temperatures go even lower when they are cooled. Most amplifiers in
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use for radio astronomy are cooled, usually to temperature ∼ 15 K (commercial refrigerators

are cheap and reliable) and sometimes to temperature . 4 K (“Helium” temperatures—not

cheap, much less reliable).

The telescope collects the incoming power from the sky, specified by the antenna tem-

perature TA. This combines linearly with the power generated by the receiver and their sum

is called the total system temperature TS = TR + TA. Usually, TR ≫ TA and detecting the

weak “signal” TA in the presence of the large receiver “noise” TR is a challenge. (In fact, both

have the same character: randomly-varying voltage vs. time, which is in fact the character

of what we commonly call noise).

9. SENSITIVITY, INTEGRATION TIME, AND BANDWIDTH

The uncertainty in the measurement of system temperature is about ∆TS = TS√
τ∆ν

,

where τ is the integration time in seconds. The easy way to understand this is to realize

that with bandwidth ∆ν you attain one independent sample of the random fluctuating power

for each independent time interval. The signal is statistically independent over time interval
1
∆ν

. This means that the number of independent samples is N = τ∆ν. The quantity τ∆ν is

known as the time-bandwidth product and, in essence, is equal to the number of independent

samples of the signal. When sampling a random function the r.m.s. uncertainty is always

equal to the function itself divided by
√
N (this is known as “root-N statistics”).

To reiterate: the fractional uncertainty in the measurement of system temperature is

∆TS

TS

=
1√
N

=
1√
τ∆ν

(26)

Thus, the longer we integrate, the more sensitive our measurement. The wider the band-

width, the more sensitive. For continuum work, the bandwidth is limited only by our in-

strumentation; for spectral line work, the bandwidth is limited by the width of the spectral

line.

And, most importantly: to get a small error in the quantity of interest—which is the

antenna temperature TA—we need to get TS as small as possible. This, in turn, means

getting the receiver noise temperature TR as small as possible. The receiver temperature is

the most important parameter for determining the sensitivity of a radio astronomical receiver.

Or, for that matter, any other receiver, whether it be radio or TV. You need the best signal

to noise ratio you can get!
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10. SOME PRACTICAL INFORMATION ON SIGNAL LEVELS

Suppose you are observing a bandwidth ∆ν = 1 MHz and your system temperature is

TS = 100 K. This gives r.f. power P = kTS∆ν; with k = 1.4× 10−23 Watt-sec K−1 this gives

P = 1.4× 10−15 Watts. This is quite small!

Most lab equipment, such as digital samplers, needs P & 1 milliwatt, or P & 10−3

Watts. So we need to amplify the signal by a factor of 1012 in power—that’s 120 dB.

While the Watt is a suitable power measurement, we often want to express power in

a logarithmic unit. The standard one is the dBm: the power expressed in dB relative to 1

milliWatt. Thus, our r.f. power is about -118.5 dbM and we need 118.5 dB amplification to

give 0 dBm. Using the relation P = V 2

R
, for our 50 Ohm cable a power of 0 dBm corresponds

to about .2 Volts.


