
AY120A,B CHEAT-SHEET FOR SPHERICAL COORDINATE

TRANSFORMATION

Carl Heiles

In our never-ending attempt to make your life easier, we present you with the quickest of quick

summaries of spherical coordinate transformation with matrix techniques. For example, you might

need to point the telescope at some particular position in the Galaxy. In other words, you need to

convert from Galactic coordinates to altitude and azimuth. This involves three separate coordinate

transformations: Galactic longitude and latitude to equatorial right ascension and declination

[(ℓ, b) → (α, δ)]; to hour angle and declination [(α, δ) → (ha, δ)]; to azimuth and altitude [(ha, δ) →

(az, alt)]. Or maybe you need to go all or partway in the the other direction, i.e. [(az, alt) → [(α, δ)]

or maybe just [(az, alt) → [(ha, δ)].

These are conversions among four spherical coordinate systems. Such conversions involve

all those complicated combinations of trig functions (sigh). You can write down all these trig

functions for the various possible transformation—twelve possibilities in all if you include going

both directions.

But there is a much easier, more elegant, and more politically correct way: using rotation

matrices. In this method, you generate a vector in the original coordinate system; convert the

vector to another coordinate system by rotating the coordinates using matrix multiplication; and

convert the vector to the angles of the new coordinate system.

There are two big advantages with this method. First, you can apply several transformations

in succession by multiplying the rotation matrices in succession, so you break the process down into

single transformations, each with its own rotation matrix. Second, it’s easy to go “backwards”—you

just use the inverse of the matrix.

The method is general and can be applied to any coordinate transformation. Spherical coor-

dinates are characterized by two angles. One “goes around the z-axis”—it is like longitude on the

earth. The other “goes up and down” and is like latitude on the earth. These angles are “longitude-

like” and “latitude-like”, and we’ll denote them by long and lat. Thus, for Galactic coordinates,

ℓ is the “longitude-like” long and b is the “latitude-like” lat; for equatorial coordinates, it’s α (or

ha) and δ; for terrestrial coordinates, it’s az and alt.

One more thing before we get into details. Our discussion is oriented towards astronomy, but

the method works for any type of spherical coordinate transformation. There is an excellent, short

discussion of the general situation in Goldstein’s Classical Mechanics, §4.4; we include a copy of

these 3 pages as an attachment at the end.



– 2 –

1. ROTATION MATRICES: THE METHOD

To restate the problem: we start with (long, lat) in one coordinate system and want to convert

to (long′, lat′) in some other coordinate system. Here’s the prescription:

Step 1. First, convert the angles to rectangular coordinates. One would usually call these

(x, y, z); here, to emphasize the vector/matrix flavor, we call them (x0, x1, x2) and denote the

3-element vector x. To accomplish this conversion:

x0 = cos(lat) cos(long) , (1a)

x1 = cos(lat) sin(long) , (1b)

x2 = sin(lat) . (1c)

The IDL commands to accomplish this should be obvious, so we won’t state them here; but re-

member to convert the arguments to radians (in IDL, converting degrees to radians is most easily

done by multiplying by !dtor).

Step 2. Apply the rotation matrix R (we’ll discuss its definitions below):

x′ = R · x . (2)

In IDL, we’ll use the IDL variable xp to represent x’, and you do matrix multiplication with the

operator ##. . .

xp = R##x . (3)

Step 3. Convert the primed rectangular coordinates to the new set of spherical coordinates

(long′, lat′):

long′ = tan−1

(

x′
1

x′
0

)

, (4a)

lat′ = sin−1(x′

2) . (4b)

To do these in IDL, where we’ll write longp, latp:

longp = atan(xp(1),xp(0)) (5a)

latp = asin(xp(2)) ; (5b)



– 3 –

if you want to convert their outputs to degrees, multiply by !radeg. IMPORTANT: writing

atan(xp(1), xp(0)) instead of atan(xp(1)/xp(0)) ensures that the angle is given in the correct

quadrant. See the IDL documentation.

That’s it! If you want to “go backwards”, you just apply the matrix multiplications using

the inverse matrices. For rotation matrices, the inverse is always equal to the transpose(!)1—

symbolically for the matrix R, R−1 = RT. So to go from the primed system to the unprimed, you

switch the primed and unprimed in equation (2) and use the inverse rotation matrix

x = R−1 · x′ = RT · x′ . (6)

and in IDL. . .

x = invert(R)##xp = transpose(R)##xp . (7)

2. ROTATION MATRICES: SPECIFICS FOR OUR PROBLEM

OK, what are these rotation matrices? We’ll do you a big favor and tell you.

2.1. (RA, DEC) to (HA, DEC)—any epoch.

Converting from (α, δ) → (ha, δ) keeps the declination the same and uses the relationship

ha = LST − α. It is easiest to think of this in two steps, so we express

R(α,δ)→(ha,δ) = R(α,δ)→(ha,δ),2 ·R(α,δ)→(ha,δ),1 . (8)

First, we rotate around the equatorial pole by an angle equal to the Local Sidereal Time (LST ),

which does α → (α− LST ):

R(α,δ)→(ha,δ),1 =







cos(LST ) sin(LST ) 0

− sin(LST ) cos(LST ) 0

0 0 1






. (9a)

1If you don’t believe this, check on the R’s below in §2!



– 4 –

Next, the ha and α go in opposite directions, which is equivalent to converting from the original

left-handed to a right-handed coordinate system, so the second step is just to perform this reversal:

R(α,δ)→(ha,δ),2 =







1 0 0

0 −1 0

0 0 1






. (9b)

The full rotation matrix is the matrix product R(α,δ)→(ha,δ),2·R(α,δ)→(ha,δ),1. Note the order! Ap-

plying R(α,δ)→(ha,δ),2 at the beginning in the matrix product means that it operates last on the

vector x, which is what we want. So we have as the product. . .

R(α,δ)→(ha,δ) =







cos(LST ) sin(LST ) 0

sin(LST ) − cos(LST ) 0

0 0 1






. (10)

2.2. (HA, DEC) to (AZIMUTH, ALTITUDE).

Because (ha, δ) are Earth-based coordinates, this conversion depends only on your terrestrial

latitude φ:

R(ha,δ)→(az,alt) =







− sinφ 0 cosφ

0 −1 0

cosφ 0 sinφ






. (11)

2.3. EQUATORIAL to GALACTIC.

R(α,δ)1950→(ℓ,b) =







−0.066989 −0.872756 −0.483539

0.492728 −0.450347 0.744585

−0.867601 −0.188375 0.460200






. (12a)

This is from Green’s Spherical Astronomy, chapter 14.6, problem 14.6 (answers in back of book).

We should’ve made you derive this, but we’re softies. You really should at least glance at Green’s

chapter 2.7, which defines Galactic coordinates. In truth, the precession of the equatorial coordinate

system makes this matrix a function of time: the equatorial coordinates move around the sky, but



– 5 –

the Galactic ones do not. Precession amounts to nearly an arcminute per year! In principle, you

should derive the matrix for the current epoch. In practice, you may not need such high accuracy.

Better than the 1950 version are the numbers for epoch 2000, which are in Green’s equation (14.55);

epoch 2000 is lots closer to the present than is epoch 1950:

R(α,δ)2000→(ℓ,b) =







−0.054876 −0.873437 −0.483835

0.494109 −0.444830 0.746982

−0.867666 −0.198076 0.455984






. (12b)

2.4. Precession—converting equatorial between epochs.

We won’t need these for the lab course, but we give you the info for the sake of completeness.

Generating the rotation matrix for precession is a bit tedious and we won’t give the explicit formulae

here. They are in Green’s book. The elements of the matrix are in equation (9.31). These elements

contain angles, which depend on time as in equation (9.23) if you are converting from epoch

2000 to some other epoch. Precession isn’t all there is; for precision exceeding ∼ 10′′ you also

need to account for nutation of the Earth, which has a random component and is not completely

predictable. For the complete story, see Green’s chapter 9 and The Astronomical Almanac 1998,

pages B39-B43—for interested parties only!

3. DOING ALL THIS IN IDL

Obviously, all this stuff is simple in IDL, which deals easily with matrices. Before beginning,

though, a cautionary note about 2-D arrays in IDL:

3.1. A CRUCIAL PRELIMINARY: 2-D arrays in IDL.

In a computer, a multidimensional data set can be indexed in two ways, the column-major and

row-major formats. IDL uses the row-major format, as does Fortran; the other major language, C,

uses column-major. Suppose you have a 2× 2 matrix called A. In IDL’s row-major format, when

you type [print, A] IDL prints

[

A0,0 A1,0

A0,1 A1,1

]

, (13a)



– 6 –

which is different from what you are used to seeing in standard matrix notation which is the

column-major format

[

A0,0 A0,1

A1,0 A1,1

]

. (13b)

In this writeup, we are defining matrices such that, when displayed in a standard IDL print state-

ment, they look correct. For example, in equation (12b), the upper right-hand element −0.483835

is R2,0.

If you want to be a purist and define the matrices in the standard manner, that is with the

lower left-hand element −0.483835 being R0,2 instead of R2,0, go ahead and do so. You then need

to do two things. First, if you want to see the matrix displayed in the usual way, then print its

transpose by typing [print, transpose(A)]. Second, in all our IDL matrix equations, replace ## by

#.

Why does IDL do this nonstandard thing? It’s because it’s more straightforward for image

processing, in which traditionally the images are scanned row-by-row (as in a TV set) instead of

column-by-column. And IDL’s origins are image processing, not matrix math.

3.2. Try the following examples in IDL.

TestR(ha,δ)→(az,alt), going both forwards and backwards. For an observatory at latitude 41.36◦,

(az, alt) = (137.60◦, 32.43◦) transforms to (ha, δ) = (325.05s◦,−6.52◦). Hour angle is usually given

in hours using sexagesimal notation: ha = 21h40m12s.) See the IDL functions sixty and ten to

go back and forth between decimal and sexagesimal notations.

Test R(α,δ)→(ha,δ) by making up your own example, using the fact that ha = LST − α.

Test R(α,δ)1950→(ℓ,b) for the Crab Nebula. The Crab has 1950 equatorial coordinates (α, δ) =

(05h31m.5, 21◦59′) and Galactic coordinates (ℓ, b) = (184◦33′,−5◦47′).

Finally, put them all together and make sure that works, too. For all of these, make sure you

know how to go backwards! For example, suppose you want to convert (az, alt) → (α, δ). You need

to first apply R−1
(ha,δ)→(az,alt) and then R−1

(α,δ)→(ha,δ). So the full rotation matrix in this case is. . .

R(az,alt)→(α,δ) = R−1
(α,δ)→(ha,δ) ·R

−1
(ha,δ)→(az,alt) (14)

Again, note the order! Applying R−1
(α,δ)→(ha,δ) at the beginning in the matrix product means that

it operates last on the vector x.



– 7 –



– 8 –



– 9 –


