AY120A,B CHEAT-SHEET FOR SPHERICAL COORDINATE
TRANSFORMATION

Carl Heiles

In our never-ending attempt to make your life easier, we present you with the quickest of quick
summaries of spherical coordinate transformation with matrix techniques. For example, you might
need to point the telescope at some particular position in the Galaxy. In other words, you need to
convert from Galactic coordinates to altitude and azimuth. This involves three separate coordinate
transformations: Galactic longitude and latitude to equatorial right ascension and declination
[(¢,b) — (a,)]; to hour angle and declination [(a, d) — (ha,d)]; to azimuth and altitude [(ha, J) —
(az,alt)]. Or maybe you need to go all or partway in the the other direction, i.e. [(az,alt) — [(a,0)]
or maybe just [(az,alt) — [(ha,d)].

These are conversions among four spherical coordinate systems. Such conversions involve
all those complicated combinations of trig functions (sigh). You can write down all these trig
functions for the various possible transformation—twelve possibilities in all if you include going
both directions.

But there is a much easier, more elegant, and more politically correct way: using rotation
matrices. In this method, you generate a vector in the original coordinate system; convert the
vector to another coordinate system by rotating the coordinates using matrix multiplication; and
convert the vector to the angles of the new coordinate system.

There are two big advantages with this method. First, you can apply several transformations
in succession by multiplying the rotation matrices in succession, so you break the process down into
single transformations, each with its own rotation matrix. Second, it’s easy to go “backwards”—you
just use the inverse of the matrix.

The method is general and can be applied to any coordinate transformation. Spherical coor-
dinates are characterized by two angles. One “goes around the z-axis”—it is like longitude on the
earth. The other “goes up and down” and is like latitude on the earth. These angles are “longitude-
like” and “latitude-like”, and we’ll denote them by long and lat. Thus, for Galactic coordinates,
¢ is the “longitude-like” long and b is the “latitude-like” lat; for equatorial coordinates, it’s « (or
ha) and 9; for terrestrial coordinates, it’s az and alt.

One more thing before we get into details. Our discussion is oriented towards astronomy, but
the method works for any type of spherical coordinate transformation. There is an excellent, short
discussion of the general situation in Goldstein’s Classical Mechanics, §4.4; we include a copy of
these 3 pages as an attachment at the end.
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1. ROTATION MATRICES: THE METHOD

To restate the problem: we start with (long, lat) in one coordinate system and want to convert
to (long’,lat") in some other coordinate system. Here’s the prescription:

Step 1. First, convert the angles to rectangular coordinates. One would usually call these
(z,y,2); here, to emphasize the vector/matrix flavor, we call them (zg,z1,22) and denote the
3-element vector x. To accomplish this conversion:

xo = cos(lat) cos(long) , (1a)
x1 = cos(lat) sin(long) , (1b)
xo = sin(lat) . (1c)

The IDL commands to accomplish this should be obvious, so we won’t state them here; but re-
member to convert the arguments to radians (in IDL, converting degrees to radians is most easily
done by multiplying by !dtor).

Step 2. Apply the rotation matrix R (we’ll discuss its definitions below):
xX =R -x. (2)

In IDL, we’ll use the IDL variable xp to represent x’, and you do matrix multiplication with the
operator ##. ..

xp = R##x . (3)

Step 3. Convert the primed rectangular coordinates to the new set of spherical coordinates
(long',lat’):

/
long’ = tan™! <X1> , (4a)

X,Q

lat’ = sin~!(x'3) . (4b)

To do these in IDL, where we’ll write longp, latp:

longp = atan(xp(1),xp(0)) (5a)
latp = asin(xp(2)) ; (5b)



if you want to convert their outputs to degrees, multiply by !radeg. IMPORTANT: writing
atan(xp(1), xp(0)) instead of atan(xp(1)/xp(0)) ensures that the angle is given in the correct
quadrant. See the IDL documentation.

That’s it! If you want to “go backwards”, you just apply the matrix multiplications using
the inverse matrices. For rotation matrices, the inverse is always equal to the transpose(!)!—
symbolically for the matrix R, R~ = RT. So to go from the primed system to the unprimed, you
switch the primed and unprimed in equation (2) and use the inverse rotation matrix

x=R!.x¥=RT .x. (6)

and in IDL. ..

x = invert(R)##xp = transpose(R)##xp . (7)

2. ROTATION MATRICES: SPECIFICS FOR OUR PROBLEM

OK, what are these rotation matrices? We’ll do you a big favor and tell you.

2.1. (RA, DEC) to (HA, DEC)—any epoch.
Converting from («,d) — (ha,d) keeps the declination the same and uses the relationship
ha = LST — «. It is easiest to think of this in two steps, so we express
R(a,8)(ha,0) = R(a,6)=(ha,0),2 - Ria,0)>(ha,0),1 - (8)

First, we rotate around the equatorial pole by an angle equal to the Local Sidereal Time (LST),
which does a — (o — LST):

cos(LST) sin(LST) O
Ra,6)=(has)1 = | —sin(LST) cos(LST) 0 | . (9a)
0 0 1

'If you don’t believe this, check on the R’s below in §2!
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Next, the ha and « go in opposite directions, which is equivalent to converting from the original
left-handed to a right-handed coordinate system, so the second step is just to perform this reversal:

1 0 O
Ras)>has2=10 -1 0 | . (9b)
0O 0 1

The full rotation matrix is the matrix product R4 5)—(ha,6),2" R(a,6)=(ha,6),1- Note the order! Ap-
plying R(q 5)—s(ha,s),2 at the beginning in the matrix product means that it operates last on the
vector x, which is what we want. So we have as the product. ..

cos(LST) sin(LST) 0
R(a,5)=(has) = | sin(LST) —cos(LST) 0 | . (10)
0 0 1

2.2. (HA, DEC) to (AZIMUTH, ALTITUDE).

Because (ha, d) are Earth-based coordinates, this conversion depends only on your terrestrial
latitude ¢:

—sing 0 cos¢
R(ha,ﬁ)%(az,alt) = 0 -1 0 . (11)
cos¢p 0 sing

2.3. EQUATORIAL to GALACTIC.

—0.066989 —0.872756 —0.483539
Riosyomo(en) = | 0492728 —0.450347  0.744585 | . (12a)
—0.867601 —0.188375  0.460200

This is from Green’s Spherical Astronomy, chapter 14.6, problem 14.6 (answers in back of book).
We should’ve made you derive this, but we’re softies. You really should at least glance at Green’s
chapter 2.7, which defines Galactic coordinates. In truth, the precession of the equatorial coordinate
system makes this matrix a function of time: the equatorial coordinates move around the sky, but
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the Galactic ones do not. Precession amounts to nearly an arcminute per year! In principle, you
should derive the matrix for the current epoch. In practice, you may not need such high accuracy.
Better than the 1950 version are the numbers for epoch 2000, which are in Green’s equation (14.55);
epoch 2000 is lots closer to the present than is epoch 1950:

—0.054876 —0.873437 —0.483835
R(od)m0(ts) = | 0494109 —0.444830  0.746982 | . (12b)
—0.867666 —0.198076  0.455984

2.4. Precession—converting equatorial between epochs.

We won’t need these for the lab course, but we give you the info for the sake of completeness.
Generating the rotation matrix for precession is a bit tedious and we won’t give the explicit formulae
here. They are in Green’s book. The elements of the matrix are in equation (9.31). These elements
contain angles, which depend on time as in equation (9.23) if you are converting from epoch
2000 to some other epoch. Precession isn’t all there is; for precision exceeding ~ 10” you also
need to account for nutation of the Earth, which has a random component and is not completely
predictable. For the complete story, see Green’s chapter 9 and The Astronomical Almanac 1998,
pages B39-B43—for interested parties only!

3. DOING ALL THIS IN IDL

Obviously, all this stuff is simple in IDL, which deals easily with matrices. Before beginning,
though, a cautionary note about 2-D arrays in IDL:

3.1. A CRUCIAL PRELIMINARY: 2-D arrays in IDL.

In a computer, a multidimensional data set can be indexed in two ways, the column-major and
row-magjor formats. IDL uses the row-major format, as does Fortran; the other major language, C,
uses column-major. Suppose you have a 2 x 2 matrix called A. In IDL’s row-major format, when
you type [print, A] IDL prints

Aop Aip

) )

Ao1 A

) )

; (13a)
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which is different from what you are used to seeing in standard matrix notation which is the
column-major format

Aoo Ao

13b
Ao A (13)

In this writeup, we are defining matrices such that, when displayed in a standard IDL print state-
ment, they look correct. For example, in equation (12b), the upper right-hand element —0.483835
is RQVO.

If you want to be a purist and define the matrices in the standard manner, that is with the
lower left-hand element —0.483835 being Ry » instead of Ra, go ahead and do so. You then need
to do two things. First, if you want to see the matrix displayed in the usual way, then print its
transpose by typing [print, transpose(A)]. Second, in all our IDL matrix equations, replace ## by

#.

Why does IDL do this nonstandard thing? It’s because it’s more straightforward for image
processing, in which traditionally the images are scanned row-by-row (as in a TV set) instead of
column-by-column. And IDL’s origins are image processing, not matrix math.

3.2. Try the following examples in IDL.

Test R (na,5)—(az,ailt), 80ing both forwards and backwards. For an observatory at latitude 41.36°,
(az,alt) = (137.60°,32.43°) transforms to (ha,d) = (325.05s°, —6.52°). Hour angle is usually given
in hours using sexagesimal notation: ha = 21"40™12%.) See the IDL functions sixty and ten to
go back and forth between decimal and sexagesimal notations.

Test R(q,8)—s(ha,s) Py making up your own example, using the fact that ha = LST — a.

Test R(a,5)1950—(¢,5) for the Crab Nebula. The Crab has 1950 equatorial coordinates (a,§) =
(05"31™.5,21°59") and Galactic coordinates (£,b) = (184°33', —5°47").

Finally, put them all together and make sure that works, too. For all of these, make sure you
know how to go backwards! For example, suppose you want to convert (az,alt) — (a,d). You need

to first apply R}, and then R!

(ha,8)— (az,alt) (8)— (ha,d)" So the full rotation matrix in this case is. ..

-1 -1
Rz ait)—+(a,0) = R(cx,6)—>(ha,§) 'R(ha,(S)—)(az,alt) (14)

—1
(a,0)—

Again, note the order! Applying R (ha,s) &Y the beginning in the matrix product means that

it operates last on the vector x.
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44 The Eulerian angles. It has

‘already been noted that since the

elements a;; are not independent they
are not suitable as generalized coor-
dinates. Before setting up the mo-
tion of rigid bodies in the Lagrangian
formulation of mechaniesit will there-
fore be necessary to seek three inde-
pendent parameters specifying the
orientation of a rigid body. Only
when such generslized coordinates
have been found, can one write a
Lagrangian for the system and obtain
the Lagrangian equations of motion.
A number of such sets of parameters
have been deseribed in the literature,
but the most common and useful are

. the Eulerian angles. We ghall there-

fore define these angles at this point,
and show how the elements of the
orthogonal transformation matrix
can be expressed in terms of them.
One ean carry out the transforma-
tion from a given cartesian coordi-
nate system to another by means of
three successive rotations performed
in a specific sequence. The Eulerian
angles are then defined as the three
successive angles of rotation. The

ence will be star mfﬂing
the initial gystem of axes, zyz, by an

angle rclockwise about the z
axis, and the resultant coordinate
system will be labelled the En{ axes.

In the second Et% the intermediate
axes, fn{, are rotated about the f axis
produce another intermediate set,

Fie. 4-6. The rotations defining the
Eulerian angles.
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is known as the line of nodes. Fin : axeg are rotated cogntor-
wmuﬂ the } axis to produce the desired z'y’s" gys-
tem of axes. Fig. 4-6 illustrates the various stages of the sequence. Tha
Fulerian angles 8, ¢, and § thus completely specify the orientation of the
z'y's’ systern relative to the 2y and can therefore act as the thres needed
generalized coordinates.” :

The slements of the complete transformation A can be obtained by
writing the matrix as the triple product of the sepurate rotations, each of
which has & relatively simple matrix form. Thus, the initial rotation
aboub 2z can be described by & matrix D: :

§ = D,

where § and x utami. for column matrices. Bimilarly the {ransformation
from $nf to £y’ can be described by a matrix C:

| E=ct
and the last rotation to z'y'2’ by & matrix B
- x" = BE.
Henee the matrix of the complete transformation:
X = Ax
is the product of the successive matrices:
| A = BCD.
* Tnfortunately there is no unanimity in the Literature about the definition of

the Hulerian angles. The differences are not very great, but often are sufficient
1o frustmte sny easy comperison of the end formulas such rs the matrix elamegts.

Greatest confusion, perbaps, arisss from the oceasional use of left-handed coordinate .

aystoms (as by Osgood and Margensu & Murphy). More frequent is the custom
of measuring the angle of the line of nodes from the y axis and not the z axis. This
practics, which acems charscieristic of the British scheol (cf. Whittaker, Newbouit,
Ames and Murneghan) is due to taking the second rétation about y instead of £
Our sugles ¢ and ¥ are then equal to the angles ¢ -+ 5 and & — ¢ rapectively in
puch & notation. Countinental sathors usually follow the definitions given here,
except that the meanings of ¢ and ¢ are often interchanged, This does not end the
confusion, however; many suthors of guantum-mechenical discussions appesr o
use clockwise rotations, rather than the counterclockwise convention observed here.
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Now the D transformation is & rotation about z, and hence has a matrix of
the farm {ef. Eq. (4-17)): '

pos¢ =ing O
D=|—sin¢ cosgp O} (443)
0 g 1
The C trunsformation corresponds to a rotation about £, with the matrix:
| 1o 0
C=|0 eogf wnd {4-44}
)i —sind coa 8,

and finally B ig a rotation sbout ¢ and therefore haa the same form as D:

cosy gnyg 0
B=|—siny cosy 0} (445}
0 0 1
The product matrix A = BCD then follows se
coed oong — coad sng s ooB - mis g b ood 8 colg il . o ¥ win
A-(—uini-mu*m!dnﬂmw —ofn s - coxd coad von g oorg Mo |, (4}
sid xn ¢ —winéd cong . caud

The inverse transformation from body coordinates to BDROE AXEH
- x = A-ix’

is then given immediatelybythatmnspmedmatrixx: |

oon g coxd = oned ding sin —aim ¢ oo~ cogd Ho ¢ con win #§ xing
Atwq wlooed ine +oond cosg sine  —mug sing +oond coss cond  —mRD cokg |, (447D
s & Mn dnd coxg cond

Verification of the multiplications and of the orthogonality of the A matrix
will be left as an exercise. '

4-F The Cayley-Klein parameters. Various other groups of variables
have been used to deseribe the orientation of & rigid body, usueally for
convenience in some specialized calculation. One such is of sufficient
interest to deserve further mention — the so-galled Cuyley-Klein param-
elers, As there are four guantities involved, these parameters are nof
all indeperdent, and therefors are not suitable as generalized coordinates.
Originally, they were introduced into classical mechanies by Felix Klein



