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Here we discuss the techniques for recovering the spectral line shape from your data. There

are two ways to do this; you can ruin your results by using the wrong one because you introduce

too much noise. Accordingly, we provide a brief discussion of uncertainties and how they propagate

with arithmetic operations. Moreover, the equipment introduces artifacts in the reduced spectrum

which usually consist of slopes and curvature; we tell how to least-squares fit the “baseline” to

remove these artifacts.
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1. FIGURE 1

Let’s take some time to analyze Figure 1.

1.1. The Top Panel

The top panel shows the actual system temperature Tsys(ν) over a fairly wide bandwidth for

two conditions, one with the noise diode on (“cal on”) and one with cal off. The cal adds 20 K to

the system temperature.

The top panel shows noise on the spectrum. In fact, of course, the system temperature

itself has no noise on it; it’s our measurement procedure that introduces the noise. As we discuss

elsewhere, the r.m.s. noise in the system temperature for each channel ∆Tsys is approximately

∆Tsys =
Tsys√
∆ντ

(1)

where ∆ν is the frequency width of each channel and τ is the integration time. The product ∆ντ

is known as the time-bandwidth product. Note that the noise decreases as 1
√

τ
. The noise level on

the top panel of Figure 1 is what a perfect system would achieve with a time-bandwidth product

of about 1000. For the HI line’s typical frequency resolution of 5 kHz, that’s τ = 0.2 sec.

The system temperature Tsys(ν) is a measure of the total power of the system. There are two

types of system temperature. One is independent of frequency, and is usually called continuum,

meaning that there is no structure with frequency. The other is frequency-dependent, and because

the spectral line is probably the dominant contributor this is usually called line. So we have

1. Continuum contributions. For these there is no frequency dependence, so so we drop the

parenthetical (ν) and write, for example, Trcvr instead of Trcvr(ν). Contributors include

(a) The receiver temperature Trcvr. This is the portion contributed by the electronics. In

a well-designed system all of this noise comes from the first amplifier in the chain, the

one that is connected directly to the antenna. For the case of Figure 1, Trcvr ∼ 70 K. s

(b) The continuum antenna temperature Tant,cont, which comes primarily from synchrotron

radiation in the Galaxy. Galactic ionized gas and the Earth’s atmosphere contribute to

what is usually a much smaller extent. For typical positions in the sky, this amounts to

about 10 K.

(c) For the case of Figure 1, (Trcvr + Tant,cont) = 80 K. This is reflected in the top panel.

(d) The cal temperature Tcal, which is noise generated by a noise diode. We switch this on

and off to calibrate the intensity scale. Because this adds to the system temperature,

and thus ∆Tsys, we want to obtain our data with the cal turned off. Figure 1, Tcal = 20

K. This is reflected in the top panel.
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Fig. 1.— An HI line profile and its system contaminates, which must be removed by calibration.
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2. Spectral line contributions. For our work, this is the HI line, so we have as the sole contributor

(a) The spectral antenna temperature Tant,HI(ν), which maxes out at perhaps 30 K for the

21-cm line as seen with our broad-beam horn.

The total system temperature is the sum. Thus, when the cal is off, we have

Tsys(ν) = Trcvr + Tant,cont + Tant,HI(ν) = Tsys + Tant,HI(ν) (2a)

The totality of the frequency independent portion, Trcvr + Tant,cont is usually referred to as the

system temperature Tsys
1. When the cal is on we have

Tsys(ν) = Trcvr + Tant,cont + Tcal + Tant,HI(ν) = Tsys + Tcal + Tant,HI(ν) (2b)

The top panel shows these two conditions, cal on and cal off. It also shows the nonzero system

temperature off of the line; the line adds to what’s already there in the continuum. The only way

to know how much the line contributes to Tsys(ν) is to observe a large enough bandwidth so that

you are sure that the line has dropped to zero. Sometimes “being sure” is not so easy (see §4).

1.2. The Second Panel

The total system power, which consists not only of Tant but also Trcvr, goes through our

receiver system, which consists of amplifiers, mixers, filters, and cables connecting them all. The

system spoils the signal because the system has a frequency dependent gain. This gain multiplies

the system temperature. The second panel shows this gain versus IF frequency.

1.2.1. The frequency dependence of gain occurs at IF

The second panel exhibits a typical frequency-dependent gain G(ν). This requires a bit of

explanation. We make the assumption that we can split the gain into two components, one being

before the first mixer [and thus at RF: GRF (ν)] and one after [and thus at IF: GIF (ν)]. We

assume that the gain before the first mixer has no frequency dependence, so that GRF (ν) = GRF .

We assume that only the components after the first mixer exhibit frequency dependence. This

assumption allows us to write

1Strictly speaking, the system is the sum of all contributions, even including Tant,HI , and is thus frequency

dependent.
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G(ν) = GRF ·GIF (ν) (3)

Again, we emphasize the fact that we assume G(ν) depends only on the IF frequency and is is

independent of RF frequency. This means that, in the power spectrum we derive using the FFT,

G(ν) is a function of the frequency index j; and, additionally, G(ν) does not depend on the LO

frequency. In radio astronomy jargon, j is called the channel number.

Our assumption means that we can write Gj in place of G(ν), and Gj completely specifies

the gain no matter what the LO frequency is. The channel number refers explicitly to the IF

frequency, not the RF frequency, because it is computed from the baseband signal. In the example

of Figure 1, the IF frequency runs from –1.25 to +1.25 MHz and j runs from, we shall say, 0 to

2J − 1; the total number of channels is 2J .

Realizing that j refers to IF frequency, and that the gain G(ν) depends only on IF and not

on RF frequency, we can define for the gain

Gj ≡ G(ν) (4)

1.2.2. The contributors to Gj

There are two primary contributors to the gain Gj . The most important is the overall shape,

which is determined by the base-band filter; in our case this is a smooth low-pass filter having a

gradual falloff at the upper edge; filters in many radioastronomical systems are much less benign

(with shapes that are anything but smooth).

Less prominent, but nevertheless important, is wiggles caused by other effects. Here we

show sinusoidal wiggles, which are produced by imperfect VSWR’s produced by impedance

mismatch of the various system components. Sometimes there are additional artifacts produced

by God-knows-what.

1.3. The third and fourth panels

We can also use the subscript j for the measured power P (ν), but here we must realize that

the ν in P (ν) refers to RF frequency. The RF frequency, in turn, depends on the LO frequency,

so we need an additional specification for the central RF frequency. Here we use the superscripts

OFFLINE and ONLINE, so we write

POFFLINE
j ≡ P (ν) for offline spectrum (5)
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PONLINE
j ≡ P (ν) for online spectrum (6)

See Figure 1 for the offline and online spectra.

The system gain Gj multiplies the system temperature, so the measured output spectrum Pj

is just

Pj = GjTsys(ν) (7)

Panels three and four show Pj for the 2.5 MHz bandwidth segments centered on the line (the

ONLINE spectrum) and off the line. If there were no noise, the OFFLINE spectrum would

have exactly the same shape as the second panel because it multiplies the frequency-independent

system temperature Tsys:

POFFLINE
j = GjTsys (8)

2. FIGURE 2: OBTAINING THE CALIBRATED SPECTRUM Tsys(ν) FROM

THE MEASUREMENTS

Our goal is to obtain Tant,HI(ν). To this end we obtain three measurements:

1. The ONLINE, CALOFF measurement, which gives the instrumental response times the HI

line

P
ONLINE,CALOFF
j = Gj(Tsys + Tant,HI(ν)) ; (9a)

2. The OFFLINE, CALOFF measurement, which gives the instrumental response by itself

P
OFFLINE,CALOFF
j = Gj(Tsys) ; (9b)

3. The OFFLINE, CALON measurement, which gives us our intensity calibration. Tcal is our

ultimate intensity calibration: it is the only known temperature in this set of measurements.

P
OFFLINE,CALON
j = Gj(Tsys + Tcal) . (9c)

We need to manipulate these measurements to calculate the best estimate of our desired

quantity Tant,HI(ν). There are two ways to obtain this calibrated spectrum. One is straightforward

and not so good; the other is less straightforward and much better.



– 7 –

Fig. 2.— Top two panels: two different reduction techniques: näıve and cool. Bottom panel: the

ON-LINE spectrum from the top panel of figure 1
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2.1. The näive method

With this method, we use the cal in a very straightforward way. First, we use equations 9b

and 9c, with CALON and CALOFF , and take the difference to give

P
OFFLINE,CALON
j − P

OFFLINE,CALOFF
j = GjTcal (10a)

(Actually, the CALON − CALOFF spectra can be done either ONLINE or OFFLINE;

all temperatures but Tcal drop out in the difference). This equation provides Gj on a

channel-by-channel basis:

Gj =
P

OFFLINE,CALON
j − P

OFFLINE,CALOFF
j

Tcal

(10b)

Knowing Gj , we can apply it to the ONLINE,CALOFF spectrum in equation 9a. Making this

substitution, we obtain

Tsys + Tant,HI(ν) =




P

ONLINE,CALOFF
j

P
OFFLINE,CALON
j − P

OFFLINE,CALOFF
j



 [Tcal] (11)

We show this result in the upper panel of Figure 2. We see the line, but it’s very noisy. That

is, there is a lot of channel-to-channel noise. This occurs because the gain of each channel is

determined individually and independently.

2.2. The cool method

The cool method very much reduces the channel-to-channel noise by being clever in the

determination of the channel gains. Let’s begin by doing some elementary rewriting of equations

9. First rewrite equation 9a to explicitly provide our desired quantity Tsys + Tant,HI(ν),

Tsys + Tant,HI(ν) =
P

ONLINE,CALOFF
j

Gj
. (12a)

From this equation it is clear that if we know Gj we know Tsys +Tant,HI(ν). Now rewrite equation

9b to explicitly give Gj

Gj =
POFF−LINE
j

Tsys
(12b)
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From these two equations it is clear that if we know the constant Tsys, we know Gj . This might

seem like a tautology, but it’s not. Even if we don’t know Tsys, P
OFF−LINE
j tells us the shape of

Gj—and POFF−LINE
j has little noise. All we lack is the multiplicative constant Tsys, which is a

constant, independent of frequency. To be explicit, combine equations 12a and 12b and eliminate

Gj , which gives

Tsys + Tant,HI(ν) =




P

ONLINE,CALOFF
j

P
OFFLINE,CALOFF
j





︸ ︷︷ ︸

theshape

· Tsys
︸︷︷︸

scalingfactor

(13)

It remains to determine Tsys so we can get not only the shape, but the proper “vertical scale”.

We get Tsys from the cal as follows. First, on a channel-by-channel basis we would have (by

combining equations 9b and 9c)

Tsys,j =
P

OFFLINE,CALOFF
j

P
OFFLINE,CALON
j − P

OFFLINE,CALOFF
j

Tcal (14)

This gives us 2J different values for Tsys. Now realize that Tsys is independent of frequency (by

assumption; in practice, this assumption is usually very good). With this, we can use the full

bandwidth in both the numerator and denominator,

Tsys =

∑j=2J−1

j=0
P

OFFLINE,CALOFF
j

∑j=2J−1

j=0

(

P
OFFLINE,CALON
j − P

OFFLINE,CALOFF
j

)Tcal , (15)

and we insert this single number into equation 13. That is, we can write (in direct comparison to

equation 11)

Tsys + Tant,HI(ν) =

[

P
ONLINE,CALOFF
j

P
OFFLINE,CALOFF
j

]

︸ ︷︷ ︸

theshape





∑j=2J−1

j=0
P

OFFLINE,CALOFF
j

∑j=2J−1

j=0

(

P
OFFLINE,CALON
j − P

OFFLINE,CALOFF
j

)



Tcal

︸ ︷︷ ︸

Tsys:a constant, inpdendent of j

(16)

We show this result in the middle panel of Figure 2. Note the much smaller noise!
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2.3. Why so cool?

Why is the cool method so cool? Because there’s less noise! The reason is clear

when we compare the ratios of the various Pj combinations between equations 11 and 16:

everything is the same in these equations except that, in the cool method, we average
P

OFFLINE,CALOFF
j

P
OFFLINE,CALON
j

−P
OFFLINE,CALOFF
j

over channels (j). This quantity has lots of channel-to-channel

noise because the denominator contains a difference between two measured spectra; by replacing

its channel-by-channel noise fluctuations with the channel-independent average, we get rid of this

channel-to-channel noise component.

You can look at it another way: the shape is given by the lower-noise ratio

[
P

ONLINE,CALOFF
j

P
OFFLINE,CALOFF
j

]

;

the scaling is given by Tsys, which in turn depends on Tcal. In contrast, for the näive method, both

the shape and the scaling are given by Tsys,j .

There is more, though. We have implicitly assumed that the integration times for CALOFF

and CALON spectra are identical. But we don’t want to spend (“waste”) any more time than

needed on calibrating the intensity scale. This means we’d like to spend only a short time on the

CALON spectrum, meaning that it will have increased noise. This, in turn, will increase the noise

in PCALON
j −PCALOFF

j compared to what it would be if we had equal time. This would make the

näive method even worse than the top panel of Figure 2.

2.4. If it’s so cool, why. . .

Look at the bottom panel of Figure 2. This is the original spectrum from the top panel of

Figure 1. And it has less noise than the cool method! If the cool method is so cool, why can’t it

recover the original smaller noise level?

The answer lies in the necessity to remove the effects of Gj . This, in turn, requires combining

P
ONLINE,CALOFF
j , which is the ON-LINE spectrum from the top panel of Figure 1, with the

OFF-LINE spectrum from that same panel. Each has noise, and both noises contribute to the

final result.

3. ERROR PROPAGATION

This leads us to consider the way in uncertainty (or error, or noise), propagates when

we arithmetically combine quanties. This is treated in books on statistics. Probably the best

introductory text is Taylor’s An Introduction to Error Analysis. In chapter three he discusses this

propagation.

The basic rule is expressed in his equation 3.47. Suppose the quantity q is a function of x and
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y, and the errors in x and y are δx and δy. Then the error in q is just

δq2 =

(
∂q

∂x
δx

)2

+

(
∂q

∂y
δy

)2

(17)

One important thing to notice is that the errors add quadratically. Another important thing to

notice is the two most common special cases:

1. For sums and differences, we have

q = (x+ y) OR q = (x− y) (18a)

δq2 = δx2 + δy2 (18b)

So the errors add quadratically, which makes sense.

2. For products and ratios, we have

q = xy OR q =
x

y
(19a)

(
δq

q

)2

=

(
δx

x

)2

+

(
δy

y

)2

(19b)

The generatlization to more variables than just x and y should be obvious. Let’s apply these rules

to our situation:

3.1. Application of equation 18b for averages

When we take a long integration and combine many spectra, we are taking the sum of N

spectra, each with its independent error, and dividing by N to get the average. Suppose each

spectrum has the same error ∆Tsys (by “same”, we mean statistically the same, not identically the

same!). From equation 18b, the error in the sum is just

(error in sum)2 =

[
N−1∑

0

(∆Tsys,n)
2

]

= N(∆Tsys)
2 (20a)

The average is the sum divided by N , the square of the average is the square of the sum divided

by N2. Similarly, the error in the average is just that in the sum divided by N2, i.e.
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(error in average)2 =
(∆Tsys)

2

N
(20b)

or

(error in average) =
error in each measurement√

N
(20c)

This illustrates the famous, and almost general, rule that the noise decreases as the square

root of the number of times that a measurement is repeated. “The noise decreases as root N”. In

our case this rule is fulfilled by the noise decreasing as 1
√

τ
.

3.2. Application of equation 19a for the cool method

Let’s again write equation 13, but for brevity replace Tsys + Tant,HI(ν) by Tsys(ν), where

we incorporate the frequency-independent Tsys and frequency-dependent Tant,HI(ν) into a single

frequency-dependent system temperature Tsys(ν):

Tsys(ν) =




P

ONLINE,CALOFF
j

P
OFFLINE,CALOFF
j





︸ ︷︷ ︸

theshape

· Tsys
︸︷︷︸

scalingfactor

(21)

If we apply equation 19b, we get

δTsys(ν)
2 =









δP

ONLINE,CALOFF
j

P
ONLINE,CALOFF
j





2

+




δP

OFFLINE,CALOFF
j

P
OFFLINE,CALOFF
j





2



T 2

sys (22)

But the statistical properties of PONLINE,CALOFF
j and P

OFFLINE,CALOFF
j are the same, so we

find that

δTsys(ν)
2 = 2




δP

ONLINE,CALOFF
j

P
ONLINE,CALOFF
j





2

T 2

sys (23)

In words: combining the two spectra P
ONLINE,CALOFF
j and P

OFFLINE,CALOFF
j , which have

identical noise from the statistical standpoint, increases the noise δTsys(ν)
2 by 2, or the noise in

Tsys(ν) by
√
2. If you look carefully at the bottom two panels of Figure 1, you will find that this

is the only difference.



– 13 –

There is no way around the introduction of this noise unless you can generate a noise-free

spectrum of Gj . In practice, nobody can do this.

This brings up the question: because we have to measure both P
ONLINE,CALOFF
j and

P
OFFLINE,CALOFF
j and combine them, what is the optimum ratio of time to spend on each?

In particular, doesn’t it make sense to spend more time measuring the ONLINE than the

OFFLINE spectrum? After all, that’s where the signal is!

The somewhat surprising answer: given a fixed total integration time, the best result is

obtained by spending equal time. From the discussion in this section, you know enough to prove

this simple truth; the proof is straightforward.

4. FIGURE 3: REAL LIFE

In reality, the result from equation 16 is imperfect because it contains additional artifacts.

These occur because our assumptions are not completely correct. Specifically, GRF is not exactly

independent of frequency; neither is Trcvr. The most obvious result of these is to make the

spectrum have a non-flat “baseline”; the baseline is the part of the spectrum outside the line. In

other words, if there were no line, the spectrum would not be flat. The top panel in Figure 3

shows a typical “baseline problem”.

These baseline problems plague spectral line observers and there is no bulletproof solution.

Accordingly, one fits an empirical smooth curve to the baseline (the off-line portions of the

ONLINE spectrum). One usually does this with a polynomial least squares fit2. The dashed line

in the top panel of Figure 3 shows this fit; the bottom panel shows the result minus the fit, in

which the curvy baseline is removed.

This fixed-up profile looks good. The baseline fit automatically subtracts out the system

temperature, so we are left with the a 21-cm line profile coming from a zero baseline.

However, this procedure camouflages possible discoveries! For example, in the top panel of

Figure 3 the whole spectrum is displaced upwards relative to the ideal one in the bottom panel of

Figure 2. Is this upward displacement an artifact, or it is it real? It could be that our line sits on

top of a very broad, weak line whose emission is removed by the baseline-fitting procedure! But

the baseline fit subtracts out all this, making the implicit assumption that it’s an artifact.

2Use either my polyfit or IDL’s poly fit.
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Fig. 3.— The grim reality in spectral line measurements. Departures from our ideal assumptions

produce curved, displaced baselines, shown in the top panel. Fitting a polynomial baseline with

least squares and subtracting it produces the apparently perfect spectrum im the botom panel.


