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It’s easy to create labelled and annotated images using gdisplay. But sometimes you need to

use lower-level software for specialized apploications. Suppose you have a single two-d array and

want to make an image (that’s one-dimensional color). The x and y axes have meaningful values

and you want the image to incorporate those on a plot scale. And perhaps you want to make a

contour plot that overlies the image. Here’s a quick tutorial.

1. THE GLOBAL VIEW

1.1. The Order in Which We Do Things

When doing PostScript, the color table for the annotating characters can be different from

that for the image. It’s easier to change these colortables only once. Moreover, you might as well

adopt this philosophy for both X and PostScript. For this reason, when you include a colorbar,

it’s much easier to first write both images and then write their annotation. This explains why we

order the actions as we do. The actions consist of:

1. Produce a window having a nice layout of borders (§2).

2. Write the data image to the window with its particular colortable (§3).

3. Write the colorbar image to the window using the same colortable (§4).

4. Change the colortable to write characters (§5.1).

5. Write annotation for the data image (§5.2).

6. Write the annotation for the colorbar image (§5.3).

If you want, you can interchange the order of doing the data and colorbar. The following

sections describe these actions in detail.
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1.2. Our Version of colorbar

One more thing: if you want a colorbar, you can use Robishaw’s colorbar as illustrated here;

you get it automatically if you use our recommended IDL startup file. There’s another colorbar

procedure out there from Fanning; it’s different and if you use it you are on your own (you can

check by typing doc_library, ’colorbar’).

1.3. The variable named ps

In keeping with our handout PSIDL on making PostScript, we define the variable ps: equal

to 0 for writing to the screen and 1 to PostScript. For PostScript we use hardware fonts and for

X we use vector fonts, so when writing characters we include the parameter font=ps-1. Our IDL

statements below include these parameters.

2. PRODUCE A WINDOW HAVING IMAGE BORDERS AND ROOM FOR A

COLORBAR

You are writing either to an X window or PostScript file; we refer to either as the “window”.

In either case, you need to make the window larger than the image so that there’s room for the

annotation and/or the colorbar. You usually don’t want equal margins on all sides of an image.

This wastes some space because you need to provide margin space for coordinate labels, which

usually appear on only the left and bottom, so these two margins need to be wider than the right

and top. Also, you might wish to include a colorbar, usually on on the top or the right-hand side,

and that complicates the calculation of margins.

So your first task is to think about aesthetics and practicality and decide how much space you

want or need for the borders. You then use IDL to implement your decision. Here we make the

implementation easier and we also provide a straightforward way to generate a colorbar in §4.

2.1. Define Those Margins

Our procedure img_cbar_posns calculates positional information given your specification of

margin widths. Here, the word “margin” means the white space surrounding the image and, also,

the colorbar if there is one. The inputs are:

1. w_left, the distance from the left-hand edge of the image to the left-hand edge of the plotting

device, in units of the width of the image. This is the width of the left-hand margin, within

which labels will go and, also, some blank space around the image. A reasonable value is 0.1,

which leaves some room for the vertical axis labelling.
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2. w_right, the width of the right-hand margin. Often you don’t need room for labelling on the

right, so you could use a small value like 0.05.

3. w_bot, the width of the bottom margin in units of the height of the image. A reasonable

value is 0.1, which leaves some room for the vertical axis labelling.

4. w_top, the width of the top margin. Often you don’t need room for labelling on the top, so

you could use a small value like 0.05.

5. space, the distance between the image and the colorbar in units of the image size (vertical

size for a horizontal colorbar on top, horizontal size for a vertical colorbar on right hand side).

If there is no labelling on top of the image, this can be small (e.g. 0.03). If you don’t have a

colorbar, set space=0

6. width, the width of the colorbar in units of the image size, as with space. A value of 0.1

often looks good. If you don’t have a colorbar, set width=0

There are four outputs, which are used as the inputs to other procedures. The outputs are:

1. imgposn, the 4-element vector for image corner positions, normalized coordinates

2. cbarposn, the 4-element vector for colorbar corner positions, normalized coordinates

3. f_hor, the horizontal window size in units of the horizontal image size

4. f_ver, the vertical window size in units of the vertical image size

For no colorbar, the procedure call would be

img cbar posns, 0.1, 0.05, 0.1, 0.05, 0, 0, imgposn, charposn, f hor, f ver

If you want to use the default input to position the image, you can call the procedure with dummy

(undefined) variables—say, a,b,c,d,e,f:

img cbar posns, a,b,c,d,e,f, imgposn, charposn, f hor, f ver

which assumes no colorbar; if you want the default values with a colorbar:

img cbar posns, a,b,c,d,e,f, imgposn, charposn, f hor, f ver, /yescolorbar

2.2. Create the Window

First, you need to open a window. You do this differently for your computer screen (X window,

or X) and PostScript (PS):
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1. For your computer screen, you need to generate an X-window of the proper size—with the

borders and all. Suppose your image is 500× 400 pixels (X ×Y ). Then you need to generate

the larger window so you have borders, which you do with the window command, using

outputs from img cbar posns:

loadct, 0

window, 7, xs=f_hor*500, ys=f_ver*400

(The loadct,0 is a precaution, needed only if you had been using exotic color tables; it

ensures that the window background is black.)

2. If you want to create a PostScript (PS) image, make sure you are using Truecolor visual class.

For your PS window, you don’t need to do anything except open it. We strongly recommend

our psopen procedure, which we discuss in our tutorial PSIDL).

It is important to properly scale the aspect of the PS window, just like you scale the aspect

of the X window. For the PS window you define the x- and y-sizes by xsize and ysize (see

immediately below), just like you did above for the X window with xs and ys. Keeping the

aspect ratio the same means

ysize

xsize
=

ys

xs
. (1)

So, in this case, you might choose

psopen, ’test.ps’, xsize=f_hor*5., ysize=f_ver*4., /inch,

/color, /times, /bold, /isolatin1

This makes the PS window size (f hor ∗5.×f ver ∗4) inches. When opening a PostScript file

for an image, the color keyword is necessary if you are going to use GrayScale or color; the

only case when it is not needed is with pure black and white, as in a graph. Here we also have

specified a particularly nice font to use on the PS image with the last three keywords; you

might wish something different (and you could even revert to the somewhat clumsy Hershey

fonts by eliminating all font-related keywords; see PSIDL).

3. WRITE THE DATA IMAGE ONTO THE WINDOW

This is straightforward: you use the tv command with appropriate keywords that define the

sizes. Assume your image is a byte array named psi_b.
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3.1. For Nondecomposed Color (a 1-d Image with a 256-element Color Table)

For nondecomposed color, you fitst load a color table (e.g., you load a gratyscale with loadct,

0; you load STD GAMMA II with loadct, 5). Then you write the image on the screen:

tv, psi_b, imgposn[0], imgposn[1], /norm, xsize=1./f_hor, ysize=1./f_ver

3.2. For Decomposed Color (a 2-d or 3-d Color Image)

Alternatively, if you are using decomposed color, which you must be doing for a 2-d or 3-d

color image, then you have three images—the red, green, and blue versions of psi_b. You have to

write all 3, which you do with the extra commands on the first line:

tv, [ [[psi_b_red]], [[psi_b_grn]], [[psi_b_blu]] ] , true=3, $

imgposn[0], imgposn[1], /norm, xsize=1./f_hor, ysize=1./f_ver

If you will want a colorbar, you need to use the tvlct command to retreive the color table used in

making the image and, also, to define the array colort for later use.

tvlct, r,g,b,/get

colrt= [ [r], [g], [b] ]

If you won’t make a colorbar, you don’t need these last commands.

4. IF YOU HAVE A COLORBAR, WRITE ITS IMAGE NOW!

At this point we will write only the colorbar’s image, not its annotation.

4.1. For Nondecomposed Color (a 1-d Image with a 256-element Color Table)

For nondecomposed color, you enter

colorbar, pos=cbarposn, XSTYLE=4, YSTYLE=4

4.2. For Decomposed Color (a 2-d or 3-d Color Image)

You’ve already obtained the image colortable colort from the tvlct command above. To

write the colorbar image:
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loadct, 0

colorbar, pos=cbarposn, rgb=colrt, XSTYLE=4, YSTYLE=4, irange=[0,5.5], gamma=0.55

The second line of this call to colorbar, which contains the optional inputs irange, gamma (for

which we have set arbitrary numerical values in this example), applies only for a 2-d color image,

in which lightness (intensity of the image) depicts one quantity and color the other; irange is the

data range represented by the intensity part of the image, and gamma is the power to which the

image values are raised (as in equation 3 of IDIDL).

5. WRITE THE ANNOTATION ONTO THE WINDOW

5.1. Preliminaries: Define the Character Color Table

You may have written your image in vibrant color, so that each element of your 256-element

color table is good for representing the image; or you may have written a set of three RGB images

into your decomposed color PS window. Either way, you probably want a different set of colors for

your characters and plotted lines. One way is to load a new color table and choose character colors

from that.

Much easier: if you’re using our startup file, then for either X or PS, just enter

setcolors, /system_variables

(or setcolors, /sys for short). setcolors provides the default colors. These include, first, the

primary colors and their complements: !red, !green, !blue, !cyan, !magenta, !yellow, !white, !black;

and four more nonprimary colors: !orange, !forest, !purple, !gray.

5.2. Now Annotate the Data Image!

For this you use the ordinary commands you’re familiar with: plot, xyouts, etc. Suppose you

just want axes and no plotting or contouring, then overwrite the axes on the image by doing

plot, x_b, y_b, position=imgposn, color=ps*!black+(1-ps)*!white, $

/xsty, /ysty, /norm, /noerase, /nodata, font=ps-1...

Here we’ve assumed x b and y b are vectors of pixel coordinages; these are used to establish the

axis min and max values1. Note that we specify2 the color in such a fashion to make the axes white

1Alternatively, you could extablish the axis min and max values using xra and yra.

2
You’d better! See §5.4.
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for X and black for PS; normally this is what you want, because X has a black background and

PS a white one. The /noerase keyword writes over the image without erasing it and the /nodata

keyword means “don’t plot the data, just put on the axes”. If you want contours instead, then

enter

contour, psi_b, x_b, y_b, position=imgposn, color=ps*!black+(ps-1)*!white, $

/xsty, /ysty, /norm, /noerase, font=ps-1..., ...

In either case, add whatever axis titles and other info you want—these procedures have lots of

options.

At this point you might want to use IDL’s plots procedure to plot one or more symbols

somewhere on the image or xyouts to write a label. When you use these you should use either

data or normalized coordinates, not device coordinates, because device coordinates are not defined

for PostScript. For example:

xyouts, 0.3, 0.3, /normal, ORIENTATION=45, ’I AM FOREST GREEN!!’, COLOR=!forest, $

FONT=ps-1, CHARSIZE=2.0

5.3. Now Annotate the Colorbar Image!

We assume a 1-d colorbar and want to write its annotation in blue (God knows why!):

colorbar, pos=cbarposn, xtit=’Velocity, Km/s’, FONT=font, COLOR=!blue, /NOIMAGE

5.4. SOB, SOB. . . My Axes Don’t Come Out Black on PS!

If you are doing esoteric things with color in PostScript, you might find that the plot or

contour axes don’t come out black! Sob, sob, sob. . . The solution: explicitly state the color in the

call to plot or contour (by setting the keyword, for example: color=ps*!black+(1-ps)*!white)

.

Why does this happen? In PS, the default color for the axes is at the beginning of the color

table, index 0. For most color tables, the first element is black—most images go from black to

white with increasing intensity. But your color table might not do this. A good example is the

pseudo color table, discussed in our memo 1d21d3d: the first element is red, so the axes come out

magenta unless you explicitly state black.
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6. YOU’RE DONE!

You’re all done! Just one thing to remember: if you’re in PS, the file is empty until you close

it. So after you’re finished, enter

if ps then psclose

setcolors, /system_variables

7. SOME DETAILS

7.1. PS versus X: White versus Black Background

If the labels of the plot extend outside the image, then you have to be careful with the labels’

colors: on the screen they are written on the screen’s black background, but on the ps device they

are written on a white background.

Let’s reiterate that point. The default background for X is black, while that for PS is white.

X uses white text on a black background; this white text on PS’s white background won’t show.

During the process of making a pretty picture to publish, you might find it useful to give the X

window a white background so that it looks like the PS background. You can do this with

bgfill, !white

As is made clear in the documentation for bgfill, you’ve just painted the window with a

background color; in order to put a plot on top of this background you must use the /noerase

keyword when you call plot (or contour) or you’ll just overwrite the colored background (or, for

PS, your plot will end up on page 2 and your colored background will be on page 1).

7.2. X Window Preliminaries: Resizing Images

Suppose you have a two-d array called psi, say (50× 40), in which the (x, y)-coordinates are

defined by (50,40)-long vectors, respectively. You need to generate a conveniently sized image for

display purposes. Recall that your screen has something like 1024×768 pixels, maybe more, so the

50×40 image will occupy only a tiny area; you might (or might not) want your full image to occupy

most of the screen. So perhaps you want to resize your original image to (xsize = 500)× (ysize =

400). These are integral multiples of the original size, so you can use rebin (as you almost always

should: see below):

xsize = 500
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ysize = 400

psi_b = bytscl( rebin( psi, xsize, ysize))

x_b= rebin( x, xsize)

y_b= rebin( y, ysize)

Now go to §2.2.

Comments:

1. Do as we do above: be sure to treat the image and the coordinates identically!

2. While you might want to increase the array size to make its X-window image bigger, you

don’t need to do this for PS. PostScript pixels are scalable, which means they will fill the

designated area of the PostScript image. If you use rebin to increase the number of pixels in

a PostScript image, the only thing you will accomplish is to increase the PostScript file size!

3. With rebin, the expansion or reduction factors have to be integers.

4. You can also resize the image using congrid, which works for non-integral factors, as follows:

xsize = 523

ysize = 419

psi_b = bytscl( congrid( psi, xsize, ysize, /interp, /minus_one)

x_b= congrid( x, xsize, /interp, /minus_one)

y_b= congrid( y, ysize, /interp, /minus_one)

With congrid, it’s important to understand those last two keywords; look at congrid’s

documentation and experiment with a 1-d array to see their effects. /interp makes the result

smooth, while not using it retains your original pixels; /minus_one affects the interpolation

details.

You might say, ‘Well, I’ll always use congrid—it’s more flexible”. But be careful! congrid

and rebin handle enlargement and ensmallment differently, and treat the edges differently.

In particular, using congrid for downsizing an array always loses signal/noise. Don’t use

congrid unless you know what you’re doing!!

7.3. PostScript preliminaries: Use TrueColor!

As discussed in IDIDL, computer graphics cards can support multiple types of visual classes.

If you’re using Solaris or Linux, you’ll want to always start IDL in TrueColor when making PS

images; the reasons are beyond the scope of this document. Suffice it to say you will find oddities

with your displayed images if you change a color table using either PseudoColor or DirectColor
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visual classes because they are dynamic, meaning that changing the color table changes what’s

already been written on the screen. The process of annotating PS usually involves changing the

color table. If you use the same code for the X windows display that you do for PS, your changing

the color table for the character writing will, with a dynamic color table, change the appearance of

the image on the screen.


