
Basic Guide: Using VIM

Introduction:

VI and VIM are in-terminal text editors that come standard with
pretty much every UNIX operating system. Our Astro computers
have both. These editors are an alternative to using Emacs for
editing and writing programs in python. VIM is essentially an
extended version of VI, with more features, so for the remainder
of this discussion I will be simply referring to VIM. (But if
you ever do research and need to ssh onto another campus’s
servers and they only have VI, 99% of what you know will still
apply).

There are advantages and disadvantages to using VIM, just like
with any text editors. The main disadvantage of VIM is that it
has a very steep learning curve, because it is operated via many
keyboard shortcuts with somewhat obscure names like dd, dw, d},
p, u, :q!, etc. In addition, although VIM will do syntax
highlighting for Python (ie, color code things based on what
type of thing they are), it doesn’t have much intuitive support
for writing long, extensive, and complex codes (though if you
got comfortable enough you could conceivably do it). On the
other hand, the advantage of VIM is once you learn how to use
it, it is one of the most efficient ways of editing text.
(Because of all the shortcuts, and efficient ways of opening and
closing).

It is perfectly reasonable to use a dedicated program like
emacs, sublime, canopy, etc., for creating your code, and
learning VIM as a way to edit your code on the fly as you try to
run it. Or, to give another example, when I did research
involving running simulations on a supercomputer, once the
fortran files (like .py files) were transferred to the super
computer, the only way to actually edit them was through vi, as
the supercomputer didn’t have emacs, etc, installed. So it’s
handy to know.

*Note, for the purposes of this tutorial, “>>” indicates the end
of your prompt, where you begin typing in terminal.

Tutorial:

VIM can be intimidating at first, but bear with me. You can
create a new file by typing

 >>VIM filename

The syntax is identical for opening an existing file. When you
open a new file, what you see is a bunch of (~) going down the
page. These are just place holders.

The basic rule of VIM is that there are two modes: insert mode,
and edit mode. When you are in insert mode, VIM behaves like a
normal text editor: you can type letters, backspace them, enter
new lines, change variable values, etc. When VIM is in edit
mode, your cursor will navigate around the document, but you
won’t be able to type anything. However, from here you can
quickly search the document, delete lines and words, delete
paragraphs (or parts of them), paste, undo, redo, delete the
remainder of a line, and much more.

 To enter insert mode from edit mode, press “i” or the
insert key on some pcs.

 To enter edit mode from insert mode, hit <esc>.

When you are in edit mode, typing letters will cause them to
appear at the bottom of the screen in a small bar; this is where
you can enter commands for things. I’m simply going to list
those commands here, and let you experiment on how they work
(try creating a document of gibberish, with multiple paragraphs
and spaces between words, to mess around with).

Commands while in edit mode:

 ‘i’ –change to insert mode
 ‘dd’ –delete entire line (cursor can be anywhere in line)
 ‘dw’ –delete word (starting from character cursor is on),

i.e. to delete the whole word you must be on the first
letter

 ‘d}’ – delete up to the next paragraph (from current cursor
position)

 ‘D’ – delete remainder of line (from current cursor
position)

 ‘p’ – paste most recently deleted word/block of text
 ‘u’ – undo last change
 ‘.’ – repeat last change
 ‘:q!’ – “quit, don’t save”, closes document without saving

any changes made.
 ‘:wq’ – “write/quit,” writes file to disk (saves it), then

closes the document, leaving you back in terminal.
 ‘:n’ – move to the nth line of the document (ex. :4)
 ‘/text’ search document for string “text”
 ‘G’ – move to last line in file.

