
Lab 1: Computer Simulation of
a Light Detector

1 Introduction

You will develop a computer simulation of photon detection by any digital
detector of light, such as a photomultiplier tube (PMT) or a CCD. A con-
stant source of light emits photons at unpredictable times. Only the average
number of photons emitted per second is constant. During a time, ∆t, the
number of hpotons, N , emitted fluctuates about an average value by

√
N .

Also electronic noise called dark counts add errors to measurements of light.

1.1 Schedule

Due in 1 week - Report due Tuesday, September 4.

1.2 Recommended Reading

• Tutorials on linux, LATEX, and IDL: http://ugastro.berkeley.edu/aquarius/
(when in rm 705), or outside use: http://ugastro.berkeley.edu/optical

• Chapter 11 in “Error Analysis” by Taylor

• LaTeX website: http://www.giss.nasa.gov/latex/ltx-2.html

2 Detector Simulation

2.1 Overview

You will simulate, on the computer, the unpredictable arrival of individual
photons at a photon detector. Most light detectors detect photons by the
photoelectric effect. An incoming photon hits a piece of metal, ejecting an
electron which is sensed by a digital circuit and recorded as one “count”. In
the lab next week, we will use an actual PMT light detector.

1

2.2 Poisson Statistics

During a tiny time interval (such as 1 µsec), a steady light source will emit an
individual photon with some probability, just as rain drops during a steady
rain storm fall sporadically into a bucket. If N photons are expected to
arrive, the actual number of photons that arrive may differ by about ±

√
N .

Such fluctuations in the number of photons are called “Poisson” statistics
(or sometimes “photon statistics”).

According to Poisson statistics, if N events are expected to occur in a
certain time interval, the standard deviation is σ =

√
N . Poisson statistics

apply to many every–day processes such as the number of radioactive decays
by an unstable isotope, the number of Earthquakes that hit Berkeley each
year, and the number of wins by a bad baseball team in a season. Outside
lab, read Chapter 11 in “Error Analysis” on the Poisson Distribution.

Each detected photon yields one count. But a light detector has a certain
“time resolution”, tres, a short interval of time that is typically 10−6 sec
during which it can sense a photon. During each tres, there is some small
probability p that a photon arrived. After a long integration, say 1 sec,
the total number of photons that arrived is not a definite number, due to
the probabilistic arrival a photon within each tres. According to Poisson
statistics, if N photons were expected to arrive on average, then the actual
number of photons that arrive will differ with a standard deviation, σ =√

N . You will simulate these fluctuations in the arrival of photons in your
computer code, by letting the probability be p for arrival of a photon within
each tres.

2.3 Standard Deviation of the Mean

The more samples (integrations) you take the more accurately you can mea-
sure the average number of counts per integration. To illustrate this effect
take data for 1 sec, and take 12 such exposures. Choose a fixed integration
time, say 1 sec.

You will calculate the mean number of counts per sec from this set of 16
integrations, and also calculate the standard deviation, σ, of the 16 measure-
ments, and also compute the uncertainty in the mean, σMean.

Because of statistical fluctuations in the arrival of photons, the true num-
ber of counts per sec differs from the mean number of counts per sec that you
measure in your 16 trials. That is, the true rate of photons is uncertain, and

2

the mean is only an approximate measure. Its uncertainty is the “standard
deviation of the mean,” given by: σMean = σ√

Ntrials
. This is a measure of the

uncertainty in our knowledge of the average counts per sample.

3 Simulation of Photon-Counting using IDL

Your IDL computer program will simulate the detection of photons within
each tres, that occur within a total integration time, tinteg, typically many sec-
onds long in astronomical observations. Your IDL program must determine
how many photons were detected during that integration time.

The following ideas will guide you in writing the simulation in IDL.

• On the computer, use the emacs to open your new file that will contain
the computer program:

%emacs simpmt.pro & ;Edit the file simpmt.pro (& gives the window back)

• In that file, the first line of IDL code should be “pro” followed by the
name:

pro simpmt ;specifies an IDL program named simpmt

Make sure this file ends with the word END. The computer code itself
goes between these lines.

• Set the variables for a time resolution of 1 µs and the total integration
time, 1 s, with these lines of code:

t_res = 1.e-6 ;time resolution of 10$^{-6}$sec (put a comment after ‘‘;’’)
t_integ = 1.0 ;integration time in seconds

• Compute the number of time resolution elements Nel during the inte-
gration time.

Nel = t_integ/t_res

• Set the average number of photons per second, photpersec, that the
PMT detects. You might try photpersec = 100. or any number!

3

• Determine the probability p of photon arrival during each time resolu-
tion element, based on tres and photpersec.

p = ...[put your equation here]

• Put in your code a random number generator to simulate probabilistic
photon arrival during each of the N time resolution elements. To gen-
erate an array of Nel random numbers uniformly distributed between
0–1, use this IDL command1:

rand_num_arr = randomu(seed,Nel) ;

• Construct a “FOR loop” that uses one element of the random-number
array in each time resolution element, doing this Nel times. In each
loop, your code should determine if a photon arrived in each time res-
olution element. One strategy you can adopt is that if the random
number lies between 0 and p (probability of photon arrival), a pho-
ton arrived. You must tell the FOR loop how many time resolution
elements to “loop” through.

for j=0L,Nel-1 do begin ;begin FOR loop (put the ‘‘L’’ in for now)

Your code can ’count’ the accumulated number of photons by creating
a variable nphot that is increased if a photon occurred. Use an if
statement:

if rand_num_arr(j) gt p then begin
nphot = nphot + 1
end

Finally, you must end the FOR loop:

endfor ;end FOR loop

• Have your program print the total number of detected photons during
tinteg:

1In IDL, “seed” is itself a random number, made different by IDL each usage, to ensure
that the Nel random numbers are different each execution of your code.

4

print, ’Number of detected photons:’, nphot

To run this program in IDL, it must be compiled first. To do this, first
get into IDL, by going to a new window and typing IDL. In that window,
the prompt IDL> should appear. Now compile your program:

IDL> .com simpmt.pro

Now run your program by typing the program name at the IDL command
line:

IDL>simpmt

The count results should appear on the screen.

3.1 Counting Photons Over Many Observations

For your report, you should simulate 20 observations of the light source. Let
each integration be 1 second in duration. List the counts in each of the 20
integration times. Once you have the counts in an IDL array you can plot
all of the counts using the IDL command:

IDL> plot, count_array,psym=2

Make sure that your plot has labels on the axes. A plot title is also
helpful, i.e., “Counts in Integrations of 1 sec: 20 trials”.

You can get help on any topic in IDL help by typing a question mark “?”
at the IDL command line. Look up “PLOT” this way, and figure out how to
add a title and axes to your plot, and how to invoke different plot symbols
(psym =).

Your report could address the following interesting issues.

1. List the counts in each of the 20 integration times.

2. Compute the mean, standard deviation, and uncertainty in the mean,
of the 20 “observations”.

3. If only one integration had been taken, your uncertainty in the count
rate would have to be based on Poisson statistics: σ =

√
Ncts. What is

that uncertainty in the count rate?

5

4. After 20 observations, you can compare the mean number of counts per
sec you collected to the known, imposed rate, namely photpersec. Do
they agree within uncertainty — which uncertainty should you use here
and why? Explain carefully in a few sentences what observed quantity
is uncertain and by how much.

5. Is the uncertainty above different from the uncertainty you noted two
questions above (for one integration). Explain which uncertainty is
smaller and explain why.

6. As if explaining to a friend in a physics class, describe in a few sentences
why your simulation does not simply yield the same number of counts
as the input photon rate, photpersec, over and over again.

3.2 Dark Counts

Most light detectors produce spurious counts due to various electronic effects.
Suppose your detection device has a dark rate of darkpersec. Detection of
light is easiest if your adopted dark rate is less than the photon rate, say, 10
cts/s versus 100 cts/s.

Modify your code to incorporate (i.e. add) this dark count effect. Think
carefully about how dark counts will be accumulated (within each tres).

Use your code (perhaps by occasionally turning off the light source) to
measure the following quantities (as done at the telescope):

• Total counts from combined light and dark counts in 1 sec

• Just Dark counts in 1 sec (turn off the light)

• Net counts from light, i.e., total counts - dark counts . Think about
reality here. You must take a separate measurement of dark counts,
and use that average. (You can never know the dark count in an actual
exposure of a star.)

• The expected uncertainty in the net counts from light in one second,
due to propagation of uncertainty caused by Poisson fluctuations in the
light and dark counts (see Appendix I).

Make sure your writeup addresses the questions above and the issues in
Section 3.1 as they apply to a simulation that includes dark counts. Write

6

your report using LATEX. It should have a section for a short introduction,
a section describing the construction of the code you wrote, a section on
the results (including a table), and a section with responses to the questions
raised. Use a format of your choice within these constraints.

7

