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Maximum Likelihood

 Experiments select a sample from the parent
population

— Suppose we select N points from a Gaussian
parent distribution, with mean ¢ and standard

deviation, ©
— The probability of making any single
observation, x; , 1S
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* We do not know yu or G a priori
— 1 must be derived from the data
— Denote this estimate p’
* What expression for y’ gives the maximum

likelihood that the parent population has a
particular mean given a set of data?



Using Maximum Likelihood to
estimate the mean

e Suppose the parent population has a mean p’
and a known standard deviation ©
— The probability of observing the i-th point x; 1s




Estimating u

e Consider all N observations

— If the measurements are independent the
probability for observing that set 1s the product
of the individual P; (i’)
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e According to the method of maximum
likelihood we should compare the P(u’) for
various parent populations with different p’

(all with the same ©)

r

— The probability is greatest that the data were
derived from a population with p’=pu

— We assert that the most likely parent population
1s the correct one



Calculating the mean

e According to maximum likelihood the most
probable value of i’ 1s the one which gives
the maximum probability, P(u’)
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e Find the minimum of X from the derivative
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since the derivative of a sum 1s the sum of
the derivatives



* The most probable value for the mean 1s
given by




Weighting data

* Suppose some measurements are better than
others, some values are drawn from a

population with smaller G,

— Maximize
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Weighted mean

e Maximizing the probability 1s equivalent to
minimizing the argument in the exponential
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* The most probable value of the mean is the
weighted (inversely by the variance) mean



Error in the weighted mean

e If y=f(x,,x,,x;...) The fundamental law of
error propagation 1s
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For a quantity where the errors in x,, x,...
are uncorrelated



It we apply this to the formula for u’
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So the tricky part 1s computing
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Working out the derivative
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Putting 1t all together
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Or

implies




How to Fit a Straight Line

* Suppose our data, y,, are drawn from a
population such that

y(x) =a,+ byx
e For any x; we can calculate the probability
of making the observation y, as
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Straight Line Fit

* The probability for making the observed set
of measurements 1s the product

N
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Straight Line Fit

e Similarly, the
probability for  P(ab)= H(
making the
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Straight Line Fit

* The product term is a constant, independent
of a and b

— Maximizing P(a, b) 1s equivalent to minimizing
the sum of the exponential




Minimizing ¥?

 To find a and b which corresponds to the

minimum y? for constant &
Jd , d|1
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Minimizing ¥?

* These can be rearranged to find pair of
simultaneous equations for a and b which

corresponds to the minimum ?

Zyl. = aN + bei
le.yl. = aExl.+b2xi2



Minimizing ¥?

e Solving these of simultaneous equations




