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Sample & Parent Populations
• Make measurements

– x1
– x2
– In general do not expect x1 = x2
– But as you take more and more measurements a

pattern emerges in this sample
• With an infinite sample xi, i ∈ {1…∞} we can

– Expect a pattern to emerge with a characteristic value
– Exactly specify the distribution of xi
– The hypothetical pool of all possible measurements is

the parent population
– Any finite sequence is the sample population
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Histograms & Distributions
• Histogram

represents the
occurrence or
frequency of
discrete
measurements
– Parent

population
(dotted)

– Inferred parent
distribution
(solid)
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Notation
• Parent distribution: Greek, e.g., µ
• Sample distribution: Latin,

– To determine properties of the parent
distribution assume that the properties of
the sample distribution tend to those of the
parent as N tends to infinity

� 

x 
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Summation
• If we make N measurements, x1, x2, x3,

etc. the sum of these measurements is

• Typically, we use the shorthand

� 

xi
i=1

N

∑ = x1 + x2 + x3 + ...+ xN

� 

xi
i=1

N

∑ = xi∑
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Mean
• The mean of an experimental

distribution is

• The mean of the parent population is
defined as� 

x = 1
N

xi∑

� 

µ = lim
N→∞

1
N

xi∑⎛ 
⎝ 

⎞ 
⎠ 
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Median
• The median of the parent population µ1/2

is the value for which half of  xi  < µ1/2

• The median cuts the area under the
probability distribution in half

� 

P(xi < µ1/2 ) = P(xi ≥ µ1/2 ) = 1/2
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Mode
• The mode is the most probable value

drawn from the parent distribution
– The mode is the most likely value to occur

in an experiment
– For a symmetrical distribution the mean,

median and mode are all the same



9

Deviation
• The deviation, di , of a measurement, xi ,

from the mean is defined as

• If µ is the true mean value the deviation
is the error in xi� 

di = xi − µ



10

Mean Deviation
• The mean deviation vanishes!

– Evident from the definition

  

� 

lim
N→∞

d = lim
N→∞

1
N

(xi − µ)∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = lim

N→∞

1
N

xi∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

µ
       

− µ
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Mean Square Deviation
• The mean square deviation is easy to

use analytically and justified
theoretically

• σ2 is also known as the variance
– Derive this expression
– Computation of σ2 assumes we know µ 

� 

σ 2 = lim
N→∞

1
N

xi − µ( )2∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = lim

N→∞

1
N

xi
2∑⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ − µ2
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Population Mean Square Deviation

• The estimate of the standard deviation,
s, from a sample population is

• The factor (N-1) is used instead of N to
account for the fact that the mean must
be derived from the data

� 

s2 =
1

N −1
xi − x ( )2∑
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Significance
• The mean of the sample is the best

estimate of the mean of the parent
distribution
– The standard deviation, s, is characteristic

of the uncertainties associated with
attempts to measure µ

– But what is the uncertainty in µ?
• To answer these questions we need

probability distributions…
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µ and σ of Distributions

• Define µ and σ in terms of the parent
probability distribution P(x)
– Definition of P(x)

• Limit as N → ∞
• The number of observations dN  that yield

values between x and x + dx is
dN/N = P(x) dx
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Expectation Values
• The mean, µ, is the expectation value of

some quantity x
<x>

• The variance, σ2, is the expectation
value of the deviation squared

<(x-µ)2>
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Expectation Values
• For a discrete distribution, N,

observations and n distinct outcomes

µ = Lim
N→∞

1
N

xi
i=1

N

∑

= Lim
N→∞

1
N

xj
j=1

n

∑ nxj     each  x j  is a unique value

= Lim
N→∞

1
N

xjNP(x j )
j=1

n

∑

= Lim
N→∞

x jP(x j )
j=1

n

∑
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Expectation Values
• For a discrete distribution, N,

observations and n distinct outcomes

� 

σ 2 = Lim
N→∞

1
N

(xi − µ)2
i=1

N

∑

= Lim
N→∞

1
N

(x j − µ)2NP(x j )
j=1

n

∑

= Lim
N→∞

(x j − µ)2P(x j )[ ]
j=1

n

∑
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Expectation values
• The expectation value of any continuous

function of x

f (x) = f (x)P(x)dx
−∞

∞

∫
µ = xP(x)dx

−∞

∞

∫
σ 2 = (x − µ)2P(x)dx

−∞

∞

∫      

where    P(x)dx = 1
−∞

∞

∫
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Binomial Distribution
• Suppose we have two possible outcomes with

probability p and q = 1-p
– e.g., a coin toss, p  = 1/2, q = 1/2

• If we flip n coins what is the
probability of getting x heads?
– Answer is given by the Binomial Distribution

– C(n, x) is the number of combinations of n items
taken x at a time = n!/[x!(n-x)!]

� 

P(x;n, p) = C(n,x)pxqn−x

1/2

h      t
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Binomial Distribution
• The expectation value

� 

µ = x
x= 0

n

∑ P(x;n, p)

= x
x= 0

n

∑ C(n,x)pxqn−x

= x n!
x!(n − x)!

px (1− p)n−x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = np

x= 0

n

∑
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Poisson Distribution
• The Poisson distribution is the limit of

the Binomial distribution when µ << n
because p is small
– The binomial distribution describes the

probability P(x; n, p) of observing x events
per unit time out of n possible events

– Usually we don’t know n or p but we do
know µ



22

Poisson Distribution
• Suppose p << 1 then x << n

P(x;n, p) = n!
x!(n − x)!

px (1− p)n− x

n!
(n − x)!

= n(n −1)(n − 2)...(n − x − 2)(n − x −1)

≈ nx   when n >> x
n!

(n − x)!
px ≈ (np)x = µ x

(1− p)n− x = (1− p)− x (1− p)n ≈ 1× (1− p)n  since p << 1

Lim
p→0

(1− p)n = Lim
p→0

(1− p)1/ p⎡⎣ ⎤⎦
µ
= e−1( )µ = e−µ

P(x,µ) = µ x

x!
e−µ
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Poisson Distribution
• The expectation value of x is

• Expectation value of (x-µ)2

� 

x = xP(x,µ)
x=0

∞

∑ = x
x=0

∞

∑ µ x

x!
e−µ = µ

� 

σ 2 = x − µ( )2 = (x − µ)2
x=0

∞

∑ µ x

x!
e−µ = µ
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Gaussian or Normal Distribution

• The Gaussian distribution is an
approximation to the binomial
distribution for large n  and large np

� 

P(x;µ,σ ) =
1

σ 2π
e
−
1
2

x−µ
σ

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2
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Gaussian or Normal Distribution

� 

P(x;µ,σ) = 1
σ 2π

e
−1
2
x−µ
σ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

� 

P(x;µ,σ) = 1
σ 2π

e
−1
2
x−µ
σ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

+/- 1σ: 68.3%
+/- 2σ: 95.5%
+/- 3σ: 99.7% 

� 

1
2π

e−
1
2 x

2

dx
−1

1∫ = 0.683
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Combining Two Observations
• Suppose I have two sets of

measurements, ai , and bi
– A derived quantity ci = ai + bi

– What is the relation between the means
and standard deviations of ai and bi and ci

– Suppose we have the same number of
observations N of ai and bi
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Combining Two Observations

� 

N = Na = Nb

a = 1
N

ai∑ b = 1
N

bi∑

c = 1
N

ci∑ sc
2 = 1

N −1
ci − c ( )2∑

ci = ai + bi

c = 1
N

(ai +∑ bi) = 1
N

ai +∑ 1
N

bi∑
= a + b 
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Combining Two Observations

� 

sc
2 = 1

N−1 ci − c ( )2∑ , c = a + b 

sc
2 = 1

N−1 ai + bi − a + b ( )[ ]2∑
= 1

N−1 ai + bi( )2 − 2 ai + bi( ) a + b ( ) + a + b ( )2[ ]∑
= 1

N−1 ai
2 + bi

2 + 2aibi − 2 aia + aib + bia + bib ( ) + (a )2 + 2a b + b ( )2[ ]∑

= N
N−1 a2 + N

N−1b
2 + 2

N−1 aibi∑ − N
N−1 (a )2 − 2N

N−1 a b − N
N−1 b ( )2
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Combining Two Observations

• The term s2
ab is the covariance

– Murphy’s law factor
– sab can be negative, zero or positive

  

� 

sc
2 = 1

N−1 ci − c ( )2∑ , c = a + b 

= N
N−1 a2 + N

N−1b
2 + 2

N−1 aibi∑ − N
N−1 (a )2 − 2N

N−1 a b − N
N−1 b ( )2

= N
N−1 a2 − (a )2[ ]

sa
2

       
+ N

N−1 b2 − b ( )2[ ]
sb
2

       

+ 2N
N−1 ab − a b ( )

2sab
2

     

sc
2 = sa

2 + sb
2 + 2sab

2
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Combining Two Uncorrelated
Observations

• When a and b are uncorrelated the
covariance is zero

– The variance of c is the sum of the variances
of a and b

• This demonstrates the fundamentals of error
propagation

� 

sab
2 = 1

N−1 ai − a ( ) bi − b ( )∑ = 0

sc
2 = sa

2 + sb
2
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Propagation of Errors
• Suppose we want to determine x which

is a function of measured quantities, u, v,
etc.

• Assume that

� 

x = f (u,v,...)

� 

x = f (u ,v ,...)



32

Propagation of Errors
• The uncertainty in x can be found by

considering the spread of the values of x
resulting from individual measurements,
ui, vi , etc.,

• In the limit of N → ∞ the variance of x

� 

xi = f (ui,vi,...)

� 

σ x
2 = Lim

N →∞
1
N xi − x ( )

i
∑ 2
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Propagation of Errors
• Taylor expand the deviation (N→∞

assumed

� 

xi − x = ui − u ( )∂f
∂u u 

+ vi − v ( )∂f
∂v v 

+ ...

σ x
2 = 1

N ui − u ( )∂f
∂u u 

+ vi − v ( )∂f
∂v v 

+ ...
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

i
∑

= 1
N ui − u ( )2 ∂f

∂u
⎛ 
⎝ 

⎞ 
⎠ u 

2

+ vi − v ( )2 ∂f
∂v

⎛ 
⎝ 

⎞ 
⎠ v 

2

+ 2 ui − u ( ) vi − v ( )∂f
∂u u 

∂f
∂v v 

...
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i
∑
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Propagation of Errors

� 

σ x
2 = 1

N ui − u ( )2 ∂f
∂u

⎛ 
⎝ 

⎞ 
⎠ u 

2

+ vi − v ( )2 ∂f
∂v

⎛ 
⎝ 

⎞ 
⎠ v 

2

+ 2 ui − u ( ) vi − v ( )∂f
∂u u 

∂f
∂v v 

...
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i
∑

= 1
N ui − u ( )2 ∂f

∂u
⎛ 
⎝ 

⎞ 
⎠ u 

2

+
i
∑

1
N vi − v ( )2 ∂f

∂v
⎛ 
⎝ 

⎞ 
⎠ v 

2

+
i
∑

2
N ui − u ( ) vi − v ( )∂f

∂u u 

∂f
∂v v i

∑ + ...

σ x
2 = σ u

2 ∂f
∂u
⎛ 
⎝ 

⎞ 
⎠ u 

2

+ σ v
2 ∂f
∂v
⎛ 
⎝ 

⎞ 
⎠ v 

2

+ 2σ uv
2 ∂f
∂u u 

∂f
∂v v 

+ ...
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Examples of Error Propagation
• Suppose a = b + c

– We know that

assuming that the covariance is 0
• What about a = b/c?

� 

a = b + c 
σ a
2 = σ b

2 + σ c
2
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Examples of Error Propagation
• Suppose a = b/c?

assuming that the covariance is 0

� 

a = b c 
and

σ a
2 = σ b

2 ∂a
∂b

⎛ 
⎝ 

⎞ 
⎠ b 

2

+ σ c
2 ∂a
∂c
⎛ 
⎝ 

⎞ 
⎠ c 

2

+ 2σ bc
2 ∂a
∂b b 

∂a
∂c c 

+ ...

σ a
2 = σ b

2 1
c 2

+ σ c
2 b

c 2
⎛ 
⎝ 

⎞ 
⎠ 

2

or
σ a
2

a2
=
σ b
2

b2
+
σ c
2

c 2
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Error of the Mean
• Suppose we have N measurements, xi with

uncertainties characterized by si

assuming that the covariance is 0

� 

x = 1
N x1 + x2 + x3 + ...+ xN( ) = 1

N xi
i
∑

sx 
2 = s1

2 ∂x 
∂x1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x 

2

+ s2
2 ∂x 
∂x2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x 

2

+ s3
2 ∂x 
∂x3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x 

2

+ ...+ sN
2 ∂x 
∂xN

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x 

2

= si
2

i
∑ ∂x 

∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

x 

2
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Error of the Mean
• Suppose the errors on all points are

equal so that  si = s

� 

sx 
2 = si

2

i
∑ ∂x 

∂xi

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

x 

2

∂x 
∂xi

=
∂
∂xi

1
N

x j
j
∑

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
1
N

∂x j

∂xi

= δ ij

sx 
2 = s2

i
∑ 1

N
⎛ 
⎝ 

⎞ 
⎠ 

2

=
s2

N
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Examples of Error Propagation
• What happens when m = -2.5 log10(F/F0)?

– What is the error in m?

� 

m = −2.5log10 F F0( )
and

σm
2 = σF

2 ∂m
∂F
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

F 

2

σm
2 = σF

2 2.5
F log 10( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

σm
2 = 1.087( )2 σF

F
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2


