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Sample & Parent Populations

 Make measurements
— X
— X,
— In general do not expect x, = x,
— But as you take more and more measurements a
pattern emerges in this sample
» With an infinite sample x;, i € {1...«} we can
— Expect a pattern to emerge with a characteristic value
— Exactly specify the distribution of x

— The hypothetical pool of all possible measurements is
the parent population

— Any finite sequence is the sample population



Histograms & Distributions

* Histogram
represents the
occurrence or
frequency of
discrete
measurements

— Parent
population
(dotted)

— Inferred parent
distribution
(solid)
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Notation

» Parent distribution: Greek, e.g., u

« Sample distribution: Latin, x

— To determine properties of the parent
distribution assume that the properties of
the sample distribution tend to those of the
parent as N tends to infinity



Summation

* If we make N measurements, x,, x,, X3,
etc. the sum of these measurements is

N
Y X = x4 xy + XX,
i=1

* Typically, we use the shorthand



Mean

* The mean of an experimental
distribution is

76:%2%

* The mean of the parent population is
defined as

N—oo
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Median

* The median of the parent population .,
IS the value for which half of x; <y,

P(x, <p,)=P(x; 2 Wy,)=1/2

 The median cuts the area under the
probability distribution in half



Mode

* The mode is the most probable value
drawn from the parent distribution

— The mode is the most likely value to occur
In an experiment

— For a symmetrical distribution the mean,
median and mode are all the same



Deviation

* The deviation, d;, of a measurement, x;,
from the mean is defined as

d=x—U

 If yis the true mean value the deviation
IS the error in Xx;



Mean Deviation

e The mean deviation vanishes!
— Evident from the definition

lim d = lim [%Z(xi —u)} = lim [%2)@1—#

u
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Mean Square Deviation

 The mean square deviation is easy to
use analytically and justified
theoretically

Gzzlim[%Z(xi— )}—hm[ Y X }_

N—> oo N—> oo

« o%is also known as the variance
— Derive this expression
— Computation of 62 assumes we know u
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Population Mean Square Deviation

 The estimate of the standard deviation,
S, from a sample population is

, 1 =y
s == (x, — X)

* The factor (N-1) is used instead of N to
account for the fact that the mean must
be derived from the data
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Significance

* The mean of the sample is the best
estimate of the mean of the parent
distribution
— The standard deviation, s, is characteristic

of the uncertainties associated with
attempts to measure u

— But what is the uncertainty in y?

* To answer these questions we need
probability distributions...
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u and O of Distributions

* Define y and o in terms of the parent
probability distribution P(x)
— Definition of P(x)
e Limitas N —

* The number of observations dN that yield
values between x and x + dx is

dN/N = P(x) dx
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Expectation Values

 The mean, y, is the expectation value of
some quantity x

<Y>

« The variance, o2, is the expectation
value of the deviation squared

<(x-p)*>
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Expectation Values

 For a discrete distribution, N,
observations and n distinct outcomes

= Lim— ) x;n_ each x; is aunique value

.1

= LimijP(xj)
j=1

N—>o0 &
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Expectation Values

 For a discrete distribution, N,
observations and n distinct outcomes

N—oo

1 N
o’ = Lim—Z(xl.—,uf
N3

.1 )
_ %L@N;(xj—u) NP(x )

= Lim . |(x, - ) P(x )]
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Expectation values

* The expectation value of any continuous
function of x

(f) = f)P(x)dx
U= J: xP(x)dx

0’ = (x—p)’P(x)dx

where J_Oo P(x)dx =1
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Binomial Distribution

« Suppose we have two possible outcomes with
probability pand g = 1-p A
— e.g.,acointoss,p =1/2,9g=1/2 12 +
 If we flip n coins what is the
probability of getting x heads? Thoo
— Answer is given by the Binomial Distribution

P(x;n,p)=C(n,x)p*q"™

— C(n, x) is the number of combinations of n items
taken x at a time = n!/[xI(n-x)!]
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Binomial Distribution

* The expectation value

=Y xP(x;n,p)

x=0

= ZxC(n xX)pq""

—Z{

0

p(1- p)“} =np

x!(n—x)!
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Poisson Distribution

* The Poisson distribution is the limit of
the Binomial distribution when y << n
because p is small

— The binomial distribution describes the
probability P(x; n, p) of observing x events
per unit time out of n possible events

— Usually we don’t know n or p but we do
Know u
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Poisson Distribution

Suppose p << 1then x<<n

n! X n—x
P(x;n,p)= p(1-p)
x!(n—x)!

n!
(n—x)!

~n' whenn>>Xx

=nn—-1Dn-2)...n—x-2)(n—x-1)

n!
(n—x)!

A-p) " =0-p)"A-p)"'=1x1A-p)" since p<<1
. . no_ gy _ 1/p H _ —1\H _ M
Lim(1-p)" = Lim[(1-p)"" | =(e"') =e

pr=(mp) =u’

X

e—.u

P(xu)=E

x!
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Poisson Distribution

* The expectation value of x is

« Expectation value of (x-u)?

o' = <(x—u)2>= i(x 1> %e =

x=0
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Gaussian or Normal Distribution

* The Gaussian distribution is an
approximation to the binomial
distribution for large n and large np

A
P(x;u,0) = G\/Ee 2o
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Gaussian or Normal Distribution

PLx—p)/ o]

1 1.2
—— | 7 dx=0.683
A2 J‘l

+/- 16: 68.3%
+/- 20: 95.5%
+/- 36: 99.7%
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Combining Two Observations

* Suppose | have two sets of
measurements, a;, and b,
— A derived quantity ¢;= a, + b,
— What is the relation between the means
and standard deviations of a;and b;and c;

— Suppose we have the same number of
observations N of a; and b,
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Combining Two Observations

N=N,=N,

g= L =L

a—NZai b szl

I D B

c—Nch SC_N—IZ(Ci C)

c,=a,+b,

c=1Y @ +b)=~Sa+~3b
N 7 N " N

27



Combining Two Observations

= =S b) ~2a +b)(@+ b+ @+ 5)]

= Y2+ 57 +2ap, —2(a,a+ab+ba+bp)+ (@) +2ab + (13)2]
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Combining Two Observations

= a4 b Y @) b~ (b)
=l @5 (p) |+ N—N(ab ab)

) 2 2
s.=s +s,+2s,

* The term s?_, is the covariance
— Murphy’s law factor
— S,, Can be negative, zero or positive



Combining Two Uncorrelated

Observations

« When a and b are uncorrelated the
covariance Is zero

52, = ﬁZ(ai —E)(bl. —l;) =0

=5+
— The variance of c is the sum of the variances
ofaand b

 This demonstrates the fundamentals of error
propagation
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Propagation of Errors

* Suppose we want to determine x which
Is a function of measured quantities, u, v,

etc.
x=f(u,yv,...)

« Assume that

X=f(iL,v,...)
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Propagation of Errors

* The uncertainty in x can be found by
considering the spread of the values of x

resulting from individual measurements,
u, v;, etc.,

x. = f(u,v,...)
* |n the limit of N — « the variance of x

07 = Lim% Y (x,~ %)
I
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Propagation of Errors

* Taylor expand the deviation (N—co
assumed

-4 ( - u)z(g;ji . v)z(g)j 2 - -2 2 }



Propagation of Errors




Examples of Error Propagation

e Supposea=b+c
— We know that

assuming that the covariance is 0
 What about a = b/c?
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Examples of Error Propagation

* Suppose a = b/c?

a=b/c
and
oa\ (Bajz da| da
2 2 2
o.=0,—| +0)|—| +20; —
’ b( bjb “\dc ). b b &’c-
1 b\
0= G,fc—z + Gf(?j
or
c, 0, O,
_I_

assuming that the covariance is 0 36



Error of the Mean

* Suppose we have N measurements, x;with
uncertainties characterized by s;

assuming that the covariance is 0
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Error of the Mean

» Suppose the errors on all points are
equal so that s;=s
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Examples of Error Propagation

« What happens when m =-2.5log,,(F/F;,)?

— What is the error in m?

m=-2.5log,,(F/F,)

and
s afomY
! \oF )z

(25
o, =0, ' j
\Flog(IO)

o2 =(l .087)2(ﬁj2

F
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