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Chapter 1

MEASURING ERRORS

Any measurement, e.g., the postion or brightness of a star is subject to
uncertainty. Various physical phenomena impose fundamental limits to our
measurements. The quantum nature of light means that the brightness of a
given source can be established only within certain limits. The Heisenberg
uncertaintly principle resticts how well we can measure positions. What is
perhaps less well appreciated is that unless we quantify the uncertaintly in a
measurement the value of that measurement is limited.

In this class we learn how to measure things, but just as importantly we
learn how to establish how confident we are of a particular measurement.
Thus, we will strive to measure the errors in any data that we collect. If the
errors are too large for our purposes, then they must be reduced by improved
techniques and repeated measurements.

Error is defined by Webster as “the difference between an observed or
calculated value and the true value.” Usually, we do not know the “true”
value; otherwise there would be no reason for performing the experiment.
Thus we must always determine in a systematic way from the data and the
experimental conditions themselves how much confidence we can have in our
experimental results.

There is one type of error that we can deal with immediately: those
that originate from mistakes in measurement or computation. These errors
are usually apparent either as obviously incorrect data points or as results
that are not reasonably close to expected values. Rather, we are considering
random errors, or more properly random fluctuations in our measurements,
and systematic errors. These are two distinct types of error and they have
distinctly different effects on our results: precision (for random errors) and
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4 CHAPTER 1. MEASURING ERRORS

Figure 1.1: The difference between precision and accuracy is illustrated. Imagine that

this example shows the distribution of arrows in a target. A precise archer places arrows

in a narrow cluster. Only if the archer is also accurate will they be centered on the target.

accuracy (for systematic errors).

1.1 Accuracy and precision

It is important to distinguish between accuracy and precision. The accuracy
of an experiment is a measure of how close the result of the experiment is
to the true value. Therefore, it is a measure of the correctness of the result.
The precision of an experiment is a measure of how well the result has been
determined, without reference to its agreement with the true value. The
precision is also a measure of the reproducibility of the result. The difference
between these is obvious upon inspection of Figure 1.1.

It is obvious that we must consider the accuracy and precision simultane-
ously for any experiment. It would be a waste of time to determine a result
with high precision if we knew that the result would be highly inaccurate.
Conversely, a result cannot be considered to be extremely accurate if the
precision is low.
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1.2 Systematic errors

The accuracy of an experiment depends on the systematic errors. These
may result from faulty calibration of equipment, from bias on the part of
the observer, or a host of other reasons. Errors of this type are not easy to
detect and not easily studied by statistical analysis. They must be estimated
from an analysis of the experimental conditions and techniques. A major
part of the planning of an experiment should be devoted to understanding
and reducing sources of systematic errors.

Example: A student measures the length of a table top with a steel
meter stick and finds that the average of her measurements yields a result of
1.982 m for the length of the table. She then learns that the meter stick was
calibrated at 295 K and has an expansion coefficient of 0.0005 K−1. Because
her measurements were made at a room temperature of 290 K, she multiplies
her results by 1+0.0005×(290−295) = 0.9975 so that her new determination
of the length is 1.977 m. Not making this correction leads to a systematic
error.

When the student repeats the experiment, she discovers another system-
atic error: her technique for reading the meter stick was faulty in that she
did not always read the divisions from directly above the scale. By exper-
imentation she determines that this consistently resulted in a reading that
was 2 mm too short. The corrected result is 1.979 m.

In this experiment, the first result was given with a fairly high precision.
The table top was found to be 1.982 m long, with a relative precision of about
1/2000, indicated by the fact that four significant figures were quoted. The
corrections to this result were meant to improve the accuracy by compensat-
ing for known sources of deviation of the first result from the best estimate
possible.

1.3 Random errors

The precision of an experiment is dependent on how well we can overcome
random errors. These are the fluctuations in observations that yield results
that differ from experiment to experiment and that require repeated exper-
imentation to yield precise results. A given accuracy implies an equivalent
precision and, therefore, also depends to some extent on random errors.

The problem of reducing random errors is essentially one of improving
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the experimental method and refining the techniques, as well as simply re-
peating the experiment. If the random errors result for instrumental reasons,
then they can be reduced by using more reliable and more precise measuring
instruments. If the random errors result from statistical fluctuations associ-
ated with counting finite numbers of events, then they may be reduced by
counting more events.

In the measurement of the length of the table, the student might attempt
to improve the precision of her measurements by using a magnifying glass to
read the scale, or she might attempt to reduce statistical fluctuations in her
measurements by repeating the measurement several times. In neither case
would it be useful to reduce the random errors much below the systematic
errors, such as those introduced by the calibration of the meter stick. The
limits imposed by systematic errors are important considerations in planning
and performing experiments.

1.4 Significant figures and roundoff

The precision of an experimental result is implied by the number of digits
recorded in the result, although generally the uncertainty should be quoted
specifically as well. The number of significant figures in a result is defined as
follows:

1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the least
significant digit.

3. If there is a decimal point, the rightmost digit is the least significant
digit, even if it is a 0.

4. All digits between the least and most significant digits are counted as
significant digits.

For example, the following numbers each have four significant digits:
1234, 123400, 123.4, 1001, 1000., 10.10, 0.0001010, 100.0. If there is no
decimal point, there are ambiguities when the rightmost digit is 0. Thus, the
number 1010 is considered to have only three significant digits even though
the last digit might be physically significant. This can lead to ambiguity: for



1.5. THE THEORETICAL MODEL 7

example, when Sir Edmond Hillary measured the height of Mount Everest,
he obtained 29,000 feet exactly—but in order to make clear that his measure-
ment was good to 5 places he advertised 29,002. To avoid ambiguity, it is bet-
ter to supply decimal points or to write such numbers in scientific notation.
Thus, Hillary would have better advertised 29000. or, better, 2.9000 × 104

feet; or, even better, to renounce Imperial Units and use 8839.2 m.
When quoting an experimental result, the number of significant figures

should be approximately one more than that dictated by the experimental
precision. The reason for including the extra digit is to avoid errors that
might be caused by rounding errors in later calculations. If the result of
the table measurement L = 1.979 m with an uncertainty of 0.012 m, this
result could be quoted as L = (1.979 ± 0.012) m. However, if the first digit
of the uncertainty is large, such as 0.082 m, then we should probably quote
L = (1.98 ± 0.08) m. In other words, we let the uncertainty define the
precision to which we quote our result.

When insignificant digits are dropped from a number, the last digit re-
tained should be rounded off for the best accuracy. To round off a number to
fewer significant digits than were specified originally, we truncate the number
as desired and treat the excess digits as a decimal fraction. Then:

1. If the fraction is greater than 1/2, increment the new least significant
digit.

2. If the fraction is less than 1/2, do not increment.

3. If the fraction equals 1/2, increment the least significant digit in the
rounded number only if that digit is odd.

If we did not have rule (3) then we would round down for 1, 2, 3, 4, or
4/10 th’s of the time and for 5, 6, 7, 8, 9 or 5/10th’s of the time we would
round up. Always incrementing the least significant digit for a fracton of 1/2
or greater would lead to a systematic error. Thus according to rule (3) 1.235
and 1.245 both become 1.24 when rounded off to three significant figures,
but 1.2451 becomes 1.25 because 51/100 is greater than 1/2.

1.5 The theoretical model

Above, we have concentrated on one type of uncertainty, namely those as-
sociated with the measuring process. There is one more major type, which
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is associated with the intepretation and theoretical description of our result.
If we don’t have the correct theoretical model, our results may not mean
much.

For example, in our description of measuring the table, we had in mind
a particular theoretical model, namely a rectangular table. Such a table is
described by two parameters, length and width, and both are well-defined.
But suppose the table is a symmetric trapezoid—then what? Then there are
two lengths, and a total of three parameters for the table: width, length of
the longer long side, and length of the shorter long side.

If we measure only one length and one width, applying these results to
the wrong theoretical model, we are making a major error in interpretation.
This error does not show up in the quoted accuracy or precision. But it
is a more serious error—an error in concept. In common parlance this is
called “missing the forest for the trees”. This is similar to systematic errors,
which are difficult to detect and not easily studied by statistical analysis.
But using the wrong theoretical model is even more difficult to discover than
the presence of systematic errors, because one is making a measurement with
this preconceived theoretical model in mind.

1.5.1 The Shape and Size of the Earth

An example of how a model effects interpretation of data comes from early as-
tronomy. The first recorded measurement of the radius of the earth is by the
Greek astronomer Eratosthenes (276—195 BCE). After study in Alexandria
and Athens, Eratosthenes settled in Alexandria about 255 BCE and became
director of the great library there. He worked out a calendar that included
leap years, and he tried to fix the dates of literary and political events since
the siege of Troy. Eratosthenes flourished in the century following Alexander.
His writings include a poem inspired by astronomy, as well as works on the
theater and on ethics. Eratosthenes was afflicted by blindness in his old age,
and he is said to have committed suicide by starving himself to death.

Eratosthenes was a geographer—his maps were among the best made
during the classical period. He noticed that at the town of Syene (now
called Aswan), about 800 km south of Alexandria in Egypt, the Sun’s rays
fall vertically at noon at the summer solstice. Eratosthenes noted that at
Alexandria, at the same date and time, buildings and towers cast shadows,
i.e., the sun was not exactly overhead. The length of the shadow of a tower
was about one eighth of this height. He correctly assumed the Sun’s distance
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Figure 1.2: Eratosthenes’ method for determining the radius of the Earth by
application of similar triangles.

to be very great; its rays therefore are practically parallel when they reach the
Earth. Given estimates of the distance between the two cities, he was able
to calculate the circumference of the Earth. Eratosthenes measured length
in units of stades, and his estimate of the distance from Alexandria to Syene
was 5000 stades. The exact length of the units he used is doubtful (a Greek
stadium varied in length locally from 154 to 215 m) so that the accuracy of
his result is therefore uncertain because of this systematic error which has
crept in.

Application of similar triangles is the heart of Eratosthenes’ method (see
Figure 1.2). However, you can see that picking the correct way to interpret
the data is crucial too. Eratosthenes assumed that the Sun was very distant
and that the Earth was a sphere. We call this the model—not in the sense
that a model airplane is a scaled down version of the real thing, but as a set
of physical assumptions that defines the system. For example, Eratosthenes
could have picked quite a different model—a flat Earth and used this data
to find out how far away the Sun was (see Figure 1.3). By the same type
of geometric reasoning we would deduce that the sun was 8 × 800 km =
6400 km distant. The geometry is correct, but the conclusion is wrong. This
is a classic case of—garbage in garbage out!

One very important job of experimentalists and observers is to deter-
mine the parameters that describe a particular theoretical model; this is
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Figure 1.3: By assuming a different model Eratosthenes could have used his
data to find the distance to the sun. Clearly adoption of the wrong model
leads to erroneous conclusions.

how nearly all of their time and effort is spent. But they must always keep
in mind that the theoretical model they have in mind may be incorrect or
incomplete, and pursue this possibility experimentally. For example, in cur-
rent astronomy, theorists have predicted the angular scales of fluctuations in
the cosmic background radiation and nearly all observers restrict their mea-
surements to those ranges of predicted scale—thus missing the possibility
of revolutionizing the theory by discovering a major discrepancy that does
not fit the theoretical model. This is in part because funding agencies are
reluctant to fund “risky” experiments that have a low probability of success.
These aspects are embedded in the culture of modern science and it is the
rare scientist who can manage to break away from these constraints.

To summarize: our measurement uncertainties don’t mean much unless
we use the correct theoretical model to interpret our results.

1.6 Minimizing Uncertainties and Best Re-

sults

In virtually every case of a measurement one is attempting to determine quan-
titative information about some theoretical model of the object being mea-
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sured. In particular, any model is quantitatively described by parameters.
For example, astronomers are fond of measuring distances and velocities of
distant galaxies to determine two basic parameters of the Big Bang model,
the Hubble constant and its change with distance, called the deceleration
parameter. Our student is describing the theoretical model of a rectangular
table by two parameters, its length and width.

The astronomers’ example is more general in the following sense. The
student is measuring the two table parameters directly. In contrast, the
astronomer is measuring the Hubble constant indirectly by combining ob-
servations of Doppler shift and distance, each of which has its own error.
These measured quantities and their errors feed into the derived value of the
Hubble constant and its error.

Thus, in general, we shall be concerned with extracting from data the
best estimates and errors of parameters that describe a particular theoretical
model. We shall want to understand the effect of the errors in the data on
the errors in the parameters. The techniques of error analysis will help us to
determine the optimum estimates of parameters to describe the data.
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Chapter 2

ANALYZING AND
REDUCING
UNCERTAINTIES

The term error signifies a deviation of the result from some “true” value.
Usually we cannot know what the true value is, and we can consider only es-
timates of the errors inherent in the experiment. If we repeat an experiment,
the results will almost certainly differ from those of the first attempt. We
can express this difference as a discrepancy between the two results. Discrep-
ancies arise because we can determine a result only with a given uncertainty.

A study of the distribution of the results of repeated measurements of
the same quantity will lead to an understanding of the uncertainties in the
measurements, and the uncertainties will serve as estimates of the errors. The
quoted error is thus a measure of the spread of the distribution of repeated
measurements. Because, in general, we shall not be able to quote the actual
error of the results, we must develop a consistent method for determining and
quoting the estimated error. We must also realize that the model from which
we calculate theoretical parameters to describe the results of our experiment
may not be the correct model.

In the following sections we shall discuss hypothetical parameters and
probable distributions of errors pertaining to the “true” state of affairs, and
we shall discuss methods of making experimental estimates of these param-
eters and the uncertainties associated with these determinations.

13
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2.1 Parent & Sample Distributions

If we make a measurement x1 of a quantity x, we expect our observation to
approximate the quantity, but we do not expect the experimental data point
to be exactly equal to the quantity. If we make another measurement, x2,
we expect to observe a discrepancy between the two measurements because
of random errors, and we do not expect either determination to be exactly
correct, that is, equal to x. As we make more and more measurements, a
pattern will emerge from the data. Some of the measurements will be too
large, some will be too small. On the average, however, we expect them to
be distributed around the correct value, assuming we can neglect or correct
for systematic errors.

If we could make an infinite number of measurements, then we could de-
scribe exactly the distribution of the data points. This is not possible in
practice, but we can hypothesize the existence of such a distribution that
determines the probability of getting any particular observation in a single
measurement. This distribution is called the parent distribution. Simi-
larly, we can hypothesize that the measurements we have made are samples
from the parent distribution and they form the sample distribution. In the
limit of an infinite number of measurements, the sample distribution becomes
the parent distribution.

Example: A student makes 100 measurements of the length of a wooden
block. His observations, corrected for systematic errors, range from about 18
to 22 cm, and many of the observations are identical. Figure 2.1 shows a his-

togram or frequency plot of a possible set of such measurements. The height
of each step represents the number of measurements that fall between the
two values indicated by the upper and lower limits of the bar on the abscissa
of the plot. If the distribution results from random errors in measurement,
then it is likely that it can be described in terms of the Gaussian or normal
error distribution, the familiar bell-shaped curve of statistical analysis. A
Gaussian curve based on these measurements is plotted as a continuous solid
line.

We identify the smooth solid curve, determined from the set of measure-
ments displayed in the histogram, as the sample distribution. The measured
data and the curve derived from them clearly do not agree exactly. The
coarseness of the experimental histogram distinguishes it at once from the
smooth theoretical Gaussian curve. We might imagine that, if the student
were to make a great many measurements so that he could plot the his-
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Figure 2.1: Histogram of measurements of length (steps drawn with a solid
line). The smooth solid smooth curve is the continuous distribution inferred
from the sample, i.e., the solid line represents a Gaussian with the same mean
and standard deviation as the measurements. The dotted line represents the
parent distribution from which the data are drawn.

togram in finer and finer bins, that under ideal circumstances the histogram
would eventually approach a smooth Gaussian curve. If we were to calcu-
late the parameters from such a large sample, we could determine the parent
distribution, represented by the smooth dotted line in Figure 2.1.

The smooth curves in Figure 2.1 represents the probability of obtaining
values of the variable x from a set of measurements. The area under the curve
at the point x bounded by a range dx gives the number of events expected in
that region from a 100-event sample. The area, divided by the total area of
the plot, is the probability P (x) dx that a randomly selected measurement
will yield an observed value of x within the range (x−dx/2) ≤ x < (x+dx/2).
It is convenient to think in terms of a probability density function, which,
for our sample parent population, is just the dashed curve of Figure 2.1
normalized to unit area.
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2.2 Notation

A number of parameters of the parent distribution have been defined by
convention. We shall use Greek letters to denote them, and Latin letters to
denote experimental estimations of them.

In order to determine the parameters of the parent distribution, we shall
assume that the parameters of the experimental distribution equal the pa-
rameters of the parent distribution in the limit of an infinite number of
measurements. If there are N observations in a given experiment, then we
can denote this by

(parent parameter) = lim
N→∞

(experimental parameter). (2.1)

If we make N measurements x1, x2, x3, and so forth, up to a final measure-
ment xN , then the sum of all these measurements is

N
∑

i=1

xi = x1 + x2 + x3 + ... + xN , (2.2)

where the left-hand side is interpreted as the sum of the observations xi over
the index i from i = 1 to i = N inclusive. Because we shall be making
frequent use of the sum over N measurements, we shall simplify the notation
by omitting the index whenever we are considering a sum where the index i
runs from 1 to N ;

∑

xi ≡
N

∑

i=1

xi (2.3)

2.3 Mean, Median, and Mode

With these definitions, the mean x̄ of the experimental distribution is given
as

x̄ =
1

N

∑

xi (2.4)

and the mean µ of the parent population is defined as the limit

µ = lim
N→∞

(

1

N

∑

xi

)

(2.5)

The mean is therefore equivalent to average value of x.
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The median of the parent population µ1/2 is defined as that value for
which, in the limit of an infinite number of determinations xi, half the ob-
servations will be less than the median and half will be greater. In terms
of the parent distribution, this means that the probability is 50% that any
measurement xi will be larger or smaller than the median

P (xi < µ1/2) = Pi(x ≥ µ1/2) = 1/2 (2.6)

so that the median line cuts the area of the probability density distribution
in half. Because of inconvenience in computation, the median is not often
used as a statistical parameter.

The mode, or most probable value µmax, of the parent population is
that value for which the parent distribution has the greatest value. In any
given experimental measurement, this value is the one that is most likely to
be observed. In the limit of a large number of observations, this value will
probably occur most often

P (µmax) ≥ P (x 6= µmax) (2.7)

For a symmetrical distribution these parameters would all be equal by the
symmetry of their definitions. For an asymmetric distribution the median
generally falls between the most probable value and the mean. The most
probable value corresponds to the peak of the distribution, and the areas on
either side of the median are equal.

2.4 Deviations

The deviation di of any measurement xi from the mean µ of the parent
distribution is defined as the difference between xi and µ,

di ≡ xi − µ (2.8)

For computational purposes, deviations are generally defined with respect
to the mean, rather than the median or most probable value. If µ is the
true value of the quantity, di is also the true error in xi. The average of the
deviations d̄ must vanish by virtue of the definition of the mean

lim
N→∞

d̄ = lim
N→∞

[

1

N

∑

(xi − µ)
]

= lim
N→∞

(

1

N

∑

xi

)

− µ = 0 (2.9)



18 CHAPTER 2. ANALYZING AND REDUCING UNCERTAINTIES

A parameter that is easy to use analytically and that can be justified
fairly well on theoretical grounds to be a more appropriate measure of the
dispersion of the observations is the standard deviation σ. The variance
σ2 is defined as the limit of the average of the squares of the deviations from
the mean µ,

σ2 = lim
N→∞

[

1

N

∑

(xi − µ)2

]

= lim
N→∞

(

1

N

∑

x2

i

)

− µ2 (2.10)

and the standard deviation σ is the square root of the variance. The second
form is often described as the average of the squares minus the square of the
average. The standard deviation is the root mean square of the deviations,
and is associated with the second moment of the data about the mean. The
corresponding expression for the standard deviation s of the sample popula-
tion is given by

s2 =
1

N − 1

∑

(xi − x̄)2 (2.11)

where the factor N − 1, rather than N , is required in the denominator to
account for the fact that the parameter x has been determined from the data
and not independently.

Higher order moments involve the d̄3 (skewness) and the d̄4 (kurtosis).

2.5 Significance

The mean and the standard deviation, as well as the median, the most prob-
able value, and the standard deviation, are all parameters that characterize
the information we are seeking when we perform an experiment. Often we
wish to describe our distribution in terms of just the mean and standard de-
viation. The mean may not be exactly equal to the datum in question if the
parent distribution is not symmetrical about the mean, but it should have
the same characteristics. If a more detailed description is desired, it may be
useful to compute higher moments about the mean.

In general, the best we can say about the mean is that it is one of the
parameters that specifies the probability distribution: It has the same units
as the “true” value and, in accordance with convention, we shall consider it
to be the best estimate of the “true” value under the prevailing experimental
conditions.

The variance σ2 and the standard deviation σ characterize the uncer-
tainties associated with our experimental attempts to determine the “true”
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values. For a given number of observations, the uncertainty in determining
the mean of the parent distribution is proportional to the standard deviation
of that distribution. The standard deviation σ is, therefore, an appropriate
measure of the uncertainty due to fluctuations in the observations in our at-
tempt to determine the “true” value. But these two parameters are not the
full story.
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Chapter 3

THE PROBABILITY
FUNCTION

In general, the distribution resulting from purely statistical errors can be de-
scribed well by the two parameters, the mean and the standard deviation.
However, we should be aware that, at distances of a few standard deviations
from the mean of an experimental distribution, nonstatistical errors may
dominate. In some cases, it may be preferable to describe the spread of the
distribution in terms of the mean absolute deviation, rather than the stan-
dard deviation, because the former tends to deemphasize measurements that
are far from the mean. There are also distributions for which the variance
does not exist. The mean absolute deviation or some other quantity must be
used as a parameter to indicate the spread of the distribution in such cases.

We describe the distribution of all errors, both statistical and nonstatis-
tical, by the probability function P (x) of the parent population. The mean
µ and the standard deviation σ are simple moments of this function. The
probability function P (x) is defined such that in the limit of a very large
number of observations, the fraction dN of observations of the variable x
that yield values between x and x + dx is given by dN = P (x)dx.

The mean µ is the expectation value 〈x〉 of x, and the variance σ2 is
the expectation value 〈(x− µ)2〉 of the square of the deviations of x from µ.
The expectation value 〈f(x)〉 of any function of x is defined as the weighted
average of f(x), over all possible values of the variable x, with each value of
f(x) weighted by the probability density distribution P (x).

21
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3.1 Continuous Distributions

If the probability function is a continuous smoothly varying function P (x)
of the observed value x, then the mean µ is the first moment of the parent
distribution

µ =
∫

∞

−∞

xP (x)dx, (3.1)

and the variance σ2 is the second moment

σ2 =
∫

∞

−∞

(x − µ)2P (x)dx =
∫

∞

−∞

x2P (x)dx − µ2. (3.2)

The expectation value of any function of x is

〈f(x)〉 =
∫

∞

−∞

f(x)P (x)dx. (3.3)

3.2 Discrete Distributions

Our measurements are always discrete. In this case, we consider the different
measured values to lie in bins. That is, if a measured value is x, we assign
it to a bin numbered j; bin j has boundaries xj ± δxj/2, where xj is the
central value and δxj is the width of the bin. We define n bins, with bin
j = 0 containing the minimum measured value and bin j = n− 1 containing
the maximum. Then we replace the integrals by sums.

Suppose there are N observed values of x. Then we should expect each
bin to contain NP (xj) of the observations. That is,

µ = lim
N→∞

∑

xi = lim
N→∞

1

N

∑

[xjNP (xj)] = lim
N→∞

∑

[xjP (xj)] . (3.4)

Similarly, the variance σ2 can be expressed in terms of the probability
function P (x),

σ2 =
∑

[

(xj − µ)2P (xj)
]

=
∑

[xjP (xj)]
2 − µ2. (3.5)

In general, the expectation value of any function f(x) of x is given by

〈f(x)〉 =
∑

[f(xj)P (xj)] (3.6)
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3.3 Observed Distribution vs. Parent-Population

Distribution

What is the connection between the probability distribution of the parent
population and an experimental sample we obtain? We have already seen
that the uncertainties of the experimental conditions preclude a determina-
tion of the “true” values themselves. As a matter of fact, there are three
levels of abstraction between the data and the information we seek:

1. The observed probability distribution. From our experimental data
points we can determine a sample frequency distribution that describes
the way in which these particular data points are distributed over the
range of possible data points. We use x̄ to denote the mean of the data
and s2 to denote the sample variance. The shape and magnitude of the
sample distribution vary from sample to sample.

2. The parent probability distribution. From the parameters of the sample
probability distribution we can estimate the parameters of the prob-
ability distribution of the parent population of possible observations.
Our best estimate for the mean µ is the mean of the sample distribu-
tion x̄, and the best estimate for the variance σ2 is the compensated
variance s2. The shape of this parent distribution must be estimated
or assumed.

3. The parameters of the theoretical model. From the estimated param-
eters of the parent distribution we estimate the results sought—the
parameters of the theoretical model.

Refer to Figure 2.1 which shows a histogram of the measurements of the
length of the block and two Gaussian curves. The calculation of the smooth
solid curve was based on the parameters x = 20.05 cm and s = 0.53 cm
determined experimentally from the data displayed in the histogram. The
dashed curve was based on the parameters µ = 20.00 cm and σ = 0.50 cm
of the parent distribution, which could have been obtained by making a very
large number of measurements. The difference between the experimental
mean x̄ and the “true” mean µ is obvious on comparing the two curves.

We should note, however, that even the definition of µ might be some-
what uncertain, because the edge of the block is not perfectly smooth and
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we should have to define exactly what we mean by the length. In other
words, even if the theoretical model of a rectangular table is correct, this
model does not include the roughness of the edge. This makes the observed
probability distribution differ from the theoretical one. We are always re-
stricted, in working with experimental data, to estimating the parameters
of the parent population, and sometimes to defining what we mean by the
parent population.

Nevertheless, by considering the data to be a sample from the parent pop-
ulation, we can estimate the shape and dispersion of the parent distribution
to obtain useful information on the precision and reliability of our results.
Thus, we find the sample mean x̄ as an estimate of the mean µ in order to
find the “true” value of length of the block, and we find the sample variance
s2 as an estimate of the variance σ2 in order to estimate the uncertainty in
our value for µ.

3.4 Probability Distributions

Of the probability distributions that are involved in the analysis of experi-
mental data, the binomial distribution, the Poisson distribution, and
the Gaussian distribution are the most important. The Gaussian or nor-
mal error distribution is the most common because it describes the distribu-
tion of random observations for many experiments, as well as describing the
distributions obtained when we try to estimate the parameters of most other
probability distributions.

The Poisson distribution is appropriate for counting experiments where
the data represent the number of items or events observed per unit interval. It
is important in the study of random processes such as the arrival of photons.
It is therefore of great interest to astronomers.

The binomial distribution is applied to experiments in which the result
is one of a small number of possible final states, such as the number of
“heads” or “tails” in a series of coin tosses. Because both the Poisson and
the Gaussian distributions can be considered as limiting cases of the binomial
distribution, we shall derive the binomial distribution.
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3.4.1 BINOMlAL DISTRIBUTION

Suppose we toss a coin in the air. There is a 50% probability that it will
land heads up and a 50% probability that it will land tails up. By this we
mean that if we toss a coin repeatedly, the fraction of times that it lands
with heads up will asymptotically approach 1/2. For any given toss, the
probability does not determine whether or not it will land heads up; it can
only describe how we should expect a large number of tosses to be divided
into two possibilities.

Suppose we toss two coins. There are now four different possible permu-
tations of the way in which they can land: both heads up, both tails up,
and two mixtures of heads and tails depending on which one is heads up.
Because each of these permutations is equally probable, the probability for
any choice of them is 1/4. To find the probability for obtaining a particular
mixture of heads and tails, without differentiating between the two kinds of
mixtures, we must add the probabilities corresponding to each possible kind.
Thus, the total probability of finding either head up and the other tail up is
1/2. Note that the sum of the probabilities for all possibilities (1/4 + 1/4 +
1/4 + 1/4) is always equal to 1 because something is bound to happen.

Suppose we toss n coins, where n is some integer. What is the probability
that exactly x coins will land heads up, without distinguishing which of the
coins actually belongs to which group? We can consider the probability
P (x; n) to be a function of the number n of coins tossed and of the number
x of coins that land heads up. For a given experiment in which n coins are
tossed, this probability P (x; n) will vary as a function of x.

3.4.2 Permutations and Combinations

If n coins are tossed, there are 2n different possible ways in which they can
land. This is because the first coin has two possible orientations, for each
of these the second coin also has two such orientations, for each of these
the third coin also has two, and so on. Because each of these possibilities is
equally probable, the probability for any one of these possibilities to occur
at any toss of n coins is 1/2n.

How many of these possibilities will contribute to our observations of x
coins with heads up? Imagine two boxes, one labelled “heads” and divided
into x slots, and the other labelled “tails”. We shall consider first the question
of how many permutations of the coins result in the proper separation of
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x in one box and n − x in the other.

In order to count the number of permutations Pm(n, x), pick up the
coins one at a time from the n coins and put x of them into the “heads”
box. We have a choice of n coins for the first one we pick up. For our second
selection we can choose from the remaining n− 1 coins. The range of choice
is diminished until the last selection of the xth coin can be made from only
n− x + 1 remaining coins. The total number of choices for coins to fill the x
slots in the “heads” box is the product of the numbers of individual choices:

Pm(n, x) = n(n − 1)(n − 2)...(n − x + 2)(n − x + 1) (3.7)

This can be expressed more easily in terms of factorials

Pm(n, x) =
n!

(n − x)!
(3.8)

We have calculated the number of permutations Pm(n, x) that will yield x
coins in the “heads” box and n−x coins in the “tails” box, with the provision
that we have identified which coin was placed in the “heads” box first, which
was placed in second, and so on. That is, we have ordered the x coins in the
“heads” box. In our computation of 2n different possible permutations of the
n coins, we are only interested in which coins landed heads up or heads down,
not which landed first. Therefore, we must consider contributions different
only if there are different coins in the two boxes, not if the x coins within
the “heads” box are permuted into different time orderings.

The number of different combinations C(n, x) of the permutations in
the preceding enumeration results from combining the x! different ways in
which x coins in the “heads” box can be permuted within the box. For every
x! permutations, there will be only one new combination. Thus, the number
of different combinations C(n, x) is the number of permutations Pm(n, x)
divided by the degeneracy factor x! of the permutations:

C(n, x) =
Pm(n, x)

x!
=

n!

x!(n − x)!
= (n

x) (3.9)

This is the number of different possible combinations of n items taken x
at a time, commonly referred to as (n

x).
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3.4.3 Probability

The probability P (x; n) that we should observe x coins with heads up and n−
x with tails up is the product of the number of different combinations C(n, x)
that contribute to that set of observations multiplied by the probability for
each of the combinations to occur, which we have found to be (1/2)n.

Actually, we should separate the probability for each combination into
two parts: one part is the probability (1/2)x for x coins to be heads up; the
other part is the probability (1/2)n−x for the other n−x coins to be tails up.
The product of these two parts is the probability of the combination. In the
general case (i.e., lopsided but identical coins), the probability p of success
for each item (in this case landing heads up) is not equal to the probability
q = 1 − p for failure (landing tails up). The probability for each of the
combinations of x coins heads up and n − x coins tails up is pxqn−x.

With these definitions of p and q, the probability PB(x; n, p) for observing
x of the n items to be in the state with probability p is given by the binomial
distribution

PB(x; n, p) = (n
x)pxqn−x =

n!

x!(n − x)!
px(1 − p)n−x (3.10)

where q = 1−p. The name for the binomial distribution comes from the fact
that the coefficients PB(x; n, p) are closely related to the binomial theorem
for the expansion of a power of a sum. According to the binomial theorem,

(p + q)n =
n

∑

x=0

(n
x)pxqn−x (3.11)

The (j + 1)th term, corresponding to x = j, of this expansion, therefore,
is equal to the probability PB(j; n, p). We can use this result to show that
the binomial distribution coefficients PB(x; n, p) are normalized to a sum of
1. The right-hand side of this equation is the sum of probabilities over all
possible values of x from 0 to n and the left-hand side is just 1n = 1.

3.4.4 Mean and Standard Deviation

The mean of the binomial distribution is evaluated by combining the defini-
tion of µ with the formula for the probability function
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Figure 3.1: Binomial distribution for n = 10 and p = 0.5. Hence, µ = 5.0
and σ = 1.6.

µ =
n

∑

x=0

[

x
n!

x!(n − x)!
px(1 − p)n−x

]

= np (3.12)

If we perform an experiment with n items and observe the number x of
successes, after a large number of repeated experiments the average x̄ of the
number of successes will approach a mean value µ given by the probability
for success of each item p times the number of items n. In the case of coin
tossing where p = 1/2, we should expect on the average to observe half the
coins land heads up, which seems eminently reasonable.

The variance σ2 of a binomial distribution is similarly evaluated

σ2 =
n

∑

x=0

[

(x − µ)2
n!

x!(n − x)!
px(1 − p)n−x

]

= np(1 − p) (3.13)

If the probability for a single success p is equal to the probability for
failure p = q = 1/2, then the distribution is symmetric about the mean µ,
and the median µ1/2 and the most probable value are both equal to the mean.
In this case, the variance σ2 is equal to half the mean σ2 = µ/2. If p and q
are not equal, the distribution is asymmetric with a smaller variance.

The parent distribution PB(x; 10, 1/2) is shown in Figure 3.1. The curve
is symmetric about its peak at the mean and the magnitudes of the points
are such that the sum of the probabilities over all the points is equal to 1.
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Figure 3.2: Binomial distribution for n = 10 and p = 1/6. Hence µ = 10/6 =
1.67 and σ = 1.2.

The mean µ is:

µ = np = 10 × (1/2) = 5, (3.14)

and the standard deviation σ is

σ =
√

np(1 − p) =
√

10 × 0.5 × 0.5 ≃ 1.58. (3.15)

Suppose we roll 10 dice. What is the probability that x of these dice will
land with the 1 up? If we throw one die, the probability of its landing with
1 up is p = 1/6. If we throw 10 dice, the probability for x of them landing
with 1 up is given by the binomial distribution PB(x; n, p) with n = 10 and
p = 1/6: This distribution is illustrated in Figure 3.2. The distribution is
not symmetric about the mean or about any other point. The most probable
value is x = 1, but the peak of the smooth curve occurs for a slightly larger
value of x. The mean and standard deviation are

µ = 10 × 1/6 ≃ 1.67, (3.16)

and

σ =
√

10 × (1/6) × (5/6) ≃ 1.18. (3.17)
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3.4.5 Poisson Distribution

The Poisson distribution represents an approximation to the binomial distribu-
tion for the special case where the average number of successes is much
smaller than the possible number; that is, when µ ≪ n because p ≪ 1.
For such experiments the binomial distribution correctly describes the prob-
ability PB(x; n, p) of observing x events per time interval out of n possible
events, each of which has a probability p of occurring, but the large number
n of possible events makes exact evaluation from the binomial distribution
impossible. Furthermore, in these experiments, neither the number n of pos-
sible events nor the probability p for each is usually known. What may be
known instead is the average number of events µ expected in each time inter-
val or its estimate x̄ . The Poisson distribution provides an analytical form
appropriate to such investigations that describes the probability distribution
in terms of just the variable x and µ.

Consider the binomial distribution in the limiting case of p ≪ 1. We are
interested in its behavior as n becomes large while the mean µ = np remains
constant.

The binomial probability function may be written as

PB(x; n, p) =
n!

x!(n − x)!
px(1−p)n−x =

n!

x!(n − x)!
px(1−p)−x(1−p)n (3.18)

Recall, that the second term is

n!

(n − x)!
= n(n − 1)(n − 2)...(n − x − 1), (3.19)

which we can consider it to be the product of x terms, each of which is
very nearly equal to n because x ≪ n in the region of interest. This term
asymptotically approaches nx. The product of the second and third terms
thus becomes (np)x = µx. For small p, the fourth term is approximately
equal to (1 + px), which tends to 1 as p → 0.

The last term can be rearranged by substituting n = µ/p to show that it
asymptotically approaches e−µ,

lim
p→0

(1 − p)n = lim
p→0

[

(1 − p)1/p
]µ

=
(

1

e

)µ

= e−µ (3.20)

Combining these approximations, we find that the binomial distribution
probability function PB(x; n, p) asymptotically approaches the Poisson dis-
tribution Pp(x; µ) as p → 0,
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Pp(x; µ) =
µx

x!
e−µ (3.21)

Because this distribution is an approximation to the binomial distribution
for p ≪ 1, the distribution is asymmetric about its mean µ and will resemble
that of Fig. 3.2. Note that PP (x; µ) does not become 0 for x = 0 and is not
defined for negative x .

3.4.6 Mean and Standard Deviation

The Poisson distribution is a discrete distribution; it is defined only at inte-
gral values of x, although the parameter µ is a positive, real number. The
mean of the Poisson distribution is actually the parameter µ that appears
in the probability function PP (x; µ). To verify this, we can evaluate the
expectation value expectation value 〈x〉 of x

〈x〉 =
∞
∑

x=0

(

x
µx

x!
e−µ

)

= µe−µ
∞
∑

x=1

µx−1

(x − 1)!
= µe−µ

∞
∑

y=0

µy

y!
= µ (3.22)

To find the standard deviation σ, the expectation value of the square of
the deviations can be evaluated :

σ2 = 〈(x − µ)2〉 =
∞
∑

x=0

[

(x − µ)2
µx

x!
e−µ

]

= µ (3.23)

Thus, the standard deviation σ is equal to the square root of the mean µ
and the Poisson distribution has only a single parameter, µ.
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Chapter 4

AN EXAMPLE

The following example is designed to illuminate some aspects of the statistical
nature of data, the concepts of a probability distribution function, and the
mean and standard deviation.

A lighthouse emits flashes of light in a narrow beam. Suppose that the
flashes occurs at random intervals as the lantern rotates so that it is equally
likely that the flash occurs at any angle, θ. The probability distribution for
θ is a uniform or flat distribution because all angles are equally probably.
If we were to draw a histogram for θ for a large number of flashes, all bins
between −90◦ and +90◦ would have equal numbers of events.

If we measure θ for a finite number of flashes we do not expect the his-
togram to be perfectly flat because of the inherent randomness of the flashes
(Fig. 4.2). In this example a total of 1024 flashes were observed. Since the
flashes occurs at random, all angles are equally probable and the histogram
should be flat. However, in any finite experiment, there will be fluctuations
about the expected average value (indicated by the horizontal dashed line).
Compare the left and right hand panels of Fig. 4.2. The left hand reprents an
experiment with 1024 measurements, and the right represents 1024×1024 =
1,048,576 measurements. In this example with more than a million measure-
ments the measured histogram tends to the theoretically expected uniform
or flat distribution.

33
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d

θ

x

Figure 4.1: A lighthouse, represented by the black dot, emits a flash of light
that is confined to a narrow beam. The light is directed towards the coast
(to the left), i.e., −90◦ ≤ θ ≤ 90◦. The lighthouse is a distance, d, out to
sea. If the pulse of light is emitted at an angle θ, then the light is detected
at a position x = d tan θ.

4.1 From Histograms to Probability

A histogram is a graphical device for illustrating the relative occurrence of
the outcomes of an experiment. To construct a histogram the event bins must
be defined. The data can then be sorted into the bins and the number of
events in each bin counted. The height of the bars in Fig. 4.2 is proportional
to the number of events in that bin. Bins must be mutually exclusive, e.g.,
for a coin flipping experiment there are two bins corresponding to heads or
tails. In some cases the bin definitions are self-evident, e.g., if you decide
you would want to know what month to take your vacation you might make
a histogram of the number of hours of sunshine per month. In this example
an hour of sunshine is an “event” and the bins are drawn from the set of
months of the year.

In other cases defining the bins can be arbitrary. This is clearly true for
continuous variables, e.g., length or mass, or, as in the above example, an
angle. For example, in constructing a histogram of the heights of enrollees
in Astro-122 you chould choose cm or inches; since height is a continuous
variable, bins of fractional unit width, e.g, 1/2 an inch, are also perfectly
valid. If we pick bins that are too narrow, the resultant histogram will not
provide useful visualization of the distribution of data. If bins are too narrow
then the bins will contain either 1 or 0 events. Conversely, if bins are too
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Figure 4.2: Left: Histogram of the angle, θ, at which narrow pulses of
light are emitted from the lighthouse in Fig. 4.1. Each bin is 1 degree
wide. In this example a total of 1024 flashes were observed. Since the flash
occurs at random, all angle are equally probable and the histogram should be
flat. However, in any finite experiment, there will be fluctuations about the
expected average values (indicated by the horizontal dashed line). Right:
Identical plot but for 1,048,576 flashes (220). As the size of the experiment
grows and more measurements are made the results tend to the theoretical
expectation of a flat histogram.

wide then the bulk of the data will fall into only a few bins.

Histograms are instructive because they tell us about the relative oc-
curence of different events. If all events are equally likely, then the histogram
is flat (Fig. 4.2). If a histogram is sharply peaked that means the events at
the peak are more likely to occur. A histogram of rainfall by month For
northern California is sharply peaked in late Winter and early Spring. That
means that rain is more likely in January than in July. Thus, the height
of a bar in a histogram is proportional to the probability of that event
happening.

We introduce a further degree of abstraction by supposing that the events
are drawn from a probability distribution function. In any finite experi-
ment we can only estimate the probability of a particular event occuring and
we cannot deduce the full form of the probability distribution function. For
example, with a finite number of flips we can never be completely confident
that a particular coin is fair.

Figure 4.2 represents a histogram, where the y-axis shows the counts per
bin. Naturally, the scale on the y-axis changes when the number of measure-
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ments changes—compare the left and right panels of Figure 4.2. An alternate
way of describing the results is to cast them in terms of probability. If we use
probabilities then, the y-axis scaling should remain the same, independent
of how many measurements we make. Moreover, if we convert the number of
counts per bin into the probabilty of getting that count then we can compare
directly with a theoretical probability distribution function.

Probability can be defined in an intuitive way. Consider an experiment
where there are only two outcomes, e.g., heads or tails from flipping a coin.
If the coin is flipped N times then we observe NH heads and NT tails. The
probability of getting a head is the fraction of outcomes that corresponds to
that event, i.e., p(H) = NH/N and the probabiliy of getting a tail is p(T ) =
NT /N . This cannot be exact because there are always statistical fluctuations,
and we can only know the true probabilty after an infinte number of trials.
The probabilities are therefore expressed as limits. The probability of getting
a head p(H) is

p(H) = lim
N→∞

NH

N
(4.1)

and the probability of getting a tail p(T ) is

p(T ) = lim
N→∞

NT

N
. (4.2)

Note that NT + NH = N , thus p(T ) + p(H) = 1. Not only are probabilites
positive, definite quantities (0 ≥ p ≥ 1) the probability distribution fucntion
must be normalized. For a discrete distrbibution, where the outcomes are
labeled i = 0...N − 1 we have

N−1
∑

i=0

pi = 1. (4.3)

This is just a way of saying that if our probability distribution function pi is a
complete description of all possible outcomes, then something must happen!
Thus p(H) = 1 − p(T ), and if our coin is fair, then p(H) = p(T ) = 1/2.

Returning to the lighthouse we can replot the y-axis as a probability—we
simply divide the number of counts per bin by the total number of measure-
ments made in that experiment. Be sure to note that the probability refers
not just to the probability of getting so many counts at such an angle, the
only probability we can compute is the probability of getting witin the range
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Figure 4.3: The data from Fig. 4.2 expressed as an observed probabilty.
Notice that the y-axis scales are now the same and the plots are easy to
compare directly. Left: Observed probability of the angle, θ in 1-degree
wide bin. A total of 1024 flashes were observed. Right: The same plot but
for 1,048,576 flashes (220). As the size of the experiment grows and more
measurements are made the results tend to the theoretical expectation of
uniform probability (pi = 1/180 ≃ 0.0556).

of the bin

pi = p(θi − ∆θ/2 ≤ θ < θi + ∆θ/2) = lim
N→∞

N(θi − ∆θ/2 ≤ θ < θi + ∆θ/2)

N
(4.4)

where θi denotes the center of bin i, and ∆θ is the width of the bin.

4.1.1 Mean & Standard Deviation

A common measure of the typical value determined from a set of experimental
data is the average. The average value of a data set θi, comprised of N
measurements, where i ∈ {0, 1, 2, . . . , N − 1}, is computed as

X(θ) =
1

N

i=N−1
∑

i=0

θi. (4.5)

The reason for thinking about probability distribution functions now becomes
evident. If we know the form of the probability distribution function we can
predict what value of the average to expect. This value is often refered
to as the mean or eXpectation value. If all values between −90◦ and
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+90◦ are equally probably then the mean value must be 0 degrees. If pj

is the probability of achieving a result xj from a discrete list of outcomes
j ∈ {0, 1, 2, . . . , M − 1} then the mean or expectation value is

µ(x) =
M−1
∑

j=0

pjxj . (4.6)

Do not confuse M and N . In the previous example i was the experiment
counter—every time we made a new measurement the value was labeled with
i, and i was incremented by 1. Here, j enumerates the possible outcomes.
In the coin tossing example, j = 0 refers to heads and j = 1 refers to tails
and M = 2. In the lighthouse example, it is evident that the results are
not natrually restricted to a finite list of 181 outcomes. Out choice of 1-
degree wide bins is arbitrary, and the probability distribution funciton is a
continuous function of θ. To describe the lighthouse case we should use

µ(θ) =
∫ θ=90

◦

θ=−90◦
p(θ)θ dθ, (4.7)

or more generally the mean is

µ(x) =
∫

∞

−∞

p(x)x dx. (4.8)

Note that the the Greek letter µ is frequently reserved to denote the mean
of the probability distribution and that X is reserved to denote the mean of
a finite set of observations. The observed value X is an estimate of µ and
only equals the true value µ in the limit as N → ∞.

The spread of measurements is usually quantified using the variance, s2.
The square root of the variance is known as the standard deviation. The
standard deviation is useful, although perhaps not as fundamental a quantity
as the variance, because it has the same units as the mean. The variance of
a set of N measurements xi where i ∈ 0, 1, 2, . . . , N − 1 is

s2 = X(x2) − X(x)2. (4.9)

In words the varianace is the difference between the mean value of x2 and
the square of the mean value of x. The variance is also equal to the mean
square deviation:

s2 =
1

N

i=N−1
∑

i=0

[xi − X(x)]2 (4.10)
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=
1

N

∑

[

x2

i − 2X(x)xi + X(x)2
]

=
1

N

∑

x2

i −
2X

N

∑

xi + X(x)2

= X(x2) − X(x)2 (4.11)

In this derivation we have used the fact that X is a constant and
∑

X = NX.
For clarity we have dropped the limits of the sumation, but all sums are over
the range i = 0, N − 1.

For a continuous probability distributions it should be evident from the
defintion of the variance, Eq. 4.9 that

σ2 =
∫

p(x)x2 dx −
(

∫

p(x)x dx
)2

=
∫

p(x)(x − µ)2 dx (4.12)

Here the limits of integration are from −∞ to ∞, but again for clarity these
have been dropped. For this defintion it is evident that the variance is the
expectation value of the deviation from the mean, squared. Note again that
the roman s2 is distinct from the Greek µ: s2 approaches σ2 in the limit of
infinite N .

4.1.2 The Variance of a Uniform Distribution

The mean value of a uniform distribution is easy to compute. For the example
in Fig. 4.2 it is evident that µ(θ) = 0. This result would be true for any
probability distribution function that is symmetric about the origin. The
variance of a uniform distribution is not so obvious. First consider the simple
uniform distribution

p(x) = 0; x < 1/2,

= 1; 1/2 ≤ x ≤ 1/2,

= 0; x > 1/2. (4.13)

In which case it is evident that µ = 0 and

σ2 =
∫

1/2

−1/2

x2dx
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=
1

3
x3|1/2

−1/2

=
1

12
.

By scaling the distribution Eq. (4.13) to the lighthouse case we expect that
the standard deviation is σ = 180/

√
12 ≃ 52.0 degrees.

4.1.3 Transforming Probability Distributions

Although the underlying probability distribution in the lighthouse example
is the simplest possible the observed quantity is not the angle θ at which
the narrow pulse of light is emitted, but the location on the shore where
the beam is detected, x (see Fig. 4.1). Obeys a very different probability
distribution. The relation between θ and x is

x = d tan θ. (4.14)

Consider the probability that the beam is emitted at an angle between θ −
δθ/2 and θ + δθ/2. This angular range defines a bin in a histogram. The
correspodnding position bin is ranges between x − δx/2 and x + δx/2. The
number of events in these two correspnding bins must be the same, i.e.,

Nflash p(θ) dθ = Nflash p(x) dx, (4.15)

which we can rearagne to show that

p(x) = p(θ)
dθ

dx
. (4.16)

Differentiating Eq. (4.14) while holding d constant yields

dθ

dx
=

d

d2 + x2
, (4.17)

and p(θ) = 1/π (note that we have to use radians because angles in Eq.
(4.14) must be expressed in radians) we find that the probability distribution
function for p(x) is

p(x) =
1

π

d

d2 + x2
. (4.18)

Figure 4.4 takes the angles histogramed in Fig. 4.2 and converts them to
positions using Eq. (4.14).
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Figure 4.4: The data from Fig. 4.2 transformed from θ to x using Eq. (4.14)
and expressed as an observed probabilty. The uniform distribution in θ has
been converted into the highly peaked distribution, which is given by Eq.
(4.18). The dashed line plots this theoretical distribution. The bins are one
unit of d wide.
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Chapter 5

SUMMARY

Systematic error Reproducible inaccuracy introduced by faulty equipment,
calibration, or technique.
Random error Indefiniteness, of result introduced by finite precision of
measurement. Measure of fluctuation after repeated experimentation.
Uncertainty Magnitude of error that is estimated to have been made in
determination of results.
Accuracy Measure of how close the result of an experiment comes to the
“true” value.
Precision Measure of how carefully the result is determined without refer-
ence to any “true” value.
Parent population Hypothetical infinite set of data points of which the
experimental data points are assumed to be a random sample.
Parent distribution Probability distribution of the parent population from
which the sample data are chosen.
Expectation value Weighted average of a function f(x) over all values of
x, 〈f(x)〉 = limN→∞

∑

f(xi)/N =
∑

f(xj)P (xj) =
∫

f(x)P (x)dx
Mean µ = 〈x〉
Variance σ2 = 〈(xi − µ)2〉 = 〈x2〉 − µ2

Standard deviation σ =
√

σ2

Sample mean x̄ =
∑

xi/N
Sample variance s2 =

∑

(xi − x̄)2/(N − 1)
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Chapter 6

IDL Code

6.1 Accuracy & Precision

Here is the IDL code that shows the difference between accuracy and preci-
sion.

;------------------------------------------------

; Illustrate the difference between precision and

; accuracy

;

; JRG 99/8/13

;------------------------------------------------

!p.multi=[0,2,2] ; set up to make a grid of 2x2 plots

; now simulate the data

nx = 256 ; this will be the number of points

ny = nx

x = randomn(seed,nx) ; generate a normally distributed set of numbers

y = randomn(seed,ny) ; for the x and y coordinates

;------------------------------------------------

; plot the data
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plot,x,y,ps=3,xr=[-3,3],yr=[-3,3],$

title=’Accurate & Imprecise’,xthick=2,ythick=2,$

thick=2,xtit=’X’,ytit=’Y’,charsize=1.4,charthick=2

; make a bull’s eye target

theta = findgen(360) ; theta is an array 0, 1, 2, ... 359

r = 1.0 ; radius of the circle

xx = r*cos(theta/!radeg) ; use converstion from polar to

yy = r*sin(theta/!radeg) ; cartesian coordinates

oplot,xx,yy,thick=2 ; plot the circle

;------------------------------------------------

; replot the data with a smaller spread

plot,x*0.5,y*0.5,ps=3,xr=[-3,3],yr=[-3,3],$

title=’Accurate & Precise’,xthick=2,ythick=2,$

thick=2,xtit=’X’,ytit=’Y’,charsize=1.4,charthick=2

oplot,xx,yy,thick=2 ; plot the circle

;----------------------------------------------

; or with an offset

plot,x+1,y+1,ps=3,xr=[-3,3],yr=[-3,3],$

title=’Inaccurate & Imprecise’,xthick=2,ythick=2,$

thick=2,xtit=’X’,ytit=’Y’,charsize=1.4,charthick=2

oplot,xx,yy,thick=2 ; plot the circle

;----------------------------------------------

; and finally with a small spread and offset

plot,x*0.5+1,y*0.5+1,ps=3,xr=[-3,3],yr=[-3,3],$

title=’Inaccurate & Precise’,xthick=2,ythick=2,$

thick=2,xtit=’X’,ytit=’Y’,charsize=1.4,charthick=2

oplot,xx,yy,thick=2 ; plot the circle

; all done
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!p.multi=0 ; reset to normal plotting

end

6.2 Simulated Experiment

Here is the IDL code that makes the figure illustrating the experiment of
measuring lengths.

; Simulate an experiment with a Gaussian

; error distribution. Emphasize the difference between

; the parent and the sample populations.

;

; Original: JRG 99/8/13

; Revised: JRG 06/8/29

;----------------------------------------------

; The parent mean and standard deviation are

mean = 20.0

sigma = 0.5

; the number of measurements made to be made

nb = 100 ; Try an experiment with smaller and larger samples

; Use the built-in normal distribution generator to

; simulate the experiment

seed = -1 ; change this number to get a different random sequence

h = mean + sigma*randomn(seed,nb) ; use the built in random function

; Now make a histogram of the experiment by choosing the bin

; size
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binsize = 0.2

min = 18 ; Center of the lowest bin

max = 22 ; Center of highest bin

nbin = (max - min)/binsize + 1 ; number of bins between min and max

hist = intarr(nbin) ; create an array to save the histogram

; Make the list of bin centers

xhist = findgen(nbin)*binsize + min

;-------------------------------------------

; count up the number of data points in each

; data bin by looping over each bin center

for i=0,nbin-1 do begin

lo = xhist[i] - binsize/2.

hi = lo + binsize

w = where( h ge lo and h lt hi,count) ; WHERE is one of IDL’s most

; useful functions.

if count eq -1 then hist[i] = 0 else hist[i] = count

endfor

;--------------------------------------------

; Plot the answer

;

; First plot the bin centers

plot,xhist,hist,ps=1,title = ’Simulated data’,xtit=’Length (cm)’,$

ytit = ’Number of measurements’,$

charsize =2,charthick=2,xthick=2,ythick=2,thick=2

; And plot again using the histogram style line

oplot, xhist,hist,ps=10,thick=2
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; Calculate the mean and standard deviation

x = total(h)/nb ; the total function simply adds up all the values in the array

print,’The mean of the sample is’,x

; Calculate the standard deviation

s = sqrt(total( (h - mean)^2.0)/(nb - 1.0) )

print,’The standard deviation is’,s

; Label the plot

xyouts,0.2,0.85,’Sample x =’+string(x,form=’(f6.2)’),charsize=1.4,/normal

xyouts,0.2,0.8,’Sample s =’+string(s,form=’(f6.2)’),charsize=1.4,/normal

; now overplot the normal distributions inferred from the sample

xscale = min + findgen(nb)*(max - min)/nb

nd = nb*binsize*exp (-0.5 * ((xscale - x)/s)^2)/(s*sqrt(2*!pi))

oplot,xscale,nd

; and now the parent (original) distribution

nd = nb*binsize*exp (-0.5 * ((xscale - mean)/sigma)^2)/(sigma*sqrt(2*!pi))

oplot,xscale,nd,line=1

xyouts,0.7,0.85,’Parent !4l!3 =’+string(mean,form=’(f6.2)’),charsize=1.4,/normal

xyouts,0.7,0.8,’Parent !4r!3 =’+string(sigma,form=’(f6.2)’),charsize=1.4,/normal

end

6.3 Lighthouse
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; Simulate random flashes from the

; lighthouse using IDL’s built in

; random number generator

;nflash = 1024 ; number of flashes

nflash = 2L^20

thetamin = -90.0 ; minimum angle

thetamax = 90.0 ; maximum angle

iseed = -1 ; seed for random number generator

; Make a random number between 0 and 1

nr = randomu(iseed, nflash) ; randomu is IDL’s random number

; funtion

; Convert the random number 0 <= nr <= 1.0

thetar = (nr - 0.5)*(thetamax - thetamin)

; Make a histogram of the angles. First decide on the bin width

binw = 1.0 ; 1 degree wide bins

; The number of bins

nbin = (thetamax - thetamin)/binw + 1.0

bins = thetamin + findgen(nbin)*binw

histocount = fltarr(nbin)

for i=0, nbin-1 do begin

; count up the number of theta in that bin

w=where(thetar ge bins[i]-binw/2 $

and thetar lt bins[i]+binw/2,countw)

histocount[i] = countw
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endfor

plot,bins,histocount/nflash,$

ps=1,xthick=2,ythick=2,thick=2,charsize=2,charthick=2,$

xtitle = ’Angle [degrees]’,ytitle=’Probability per bin’,$

yr=[0,0.016]

oplot,bins,histocount/nflash,ps=10

; Plot a horizantal line at the expected average

; number per bin

nave = 1./nbin

oplot,[-90,90],[nave,nave],line=2,thick=2

;------------------------------------------

dist = 1.0 ; distance from the shore

xp = dist * tan(thetar/!radeg)

binxw = 1.0 ; 1 degree wide bins

xmin =-25.

xmax = 25.

; The number of bins

nbinx = (xmax - xmin)/binxw + 1.0

xbins = xmin + findgen(nbinx)*binxw

histocount = fltarr(nbinx)

for i=0, nbinx-1 do begin
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; count up the number of theta in that bin

w = where( xp ge xbins[i]-binxw/2 and xp lt xbins[i]+binxw/2, countw)

histocount[i] = countw

endfor

plot,xbins,histocount/nflash,$

ps=1,xthick=2,ythick=2,thick=2,charsize=2,charthick=2,$

xtitle = ’Position [in units of d]’,ytitle=’Probability per bin’

oplot,xbins,histocount/nflash,ps=10

oplot, xbins,(1/!pi) /(dist + xbins^2/dist),line=2

end


