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Abstract

Data acquisition and error analysis are integral parts of any quan-
titative experiment or survey. In our introductory lab assignment we
were required to analyze the statistical properties of a computerized
experiment used to count photons from an LED. The end objective was
to examine how errors from varying the parameters of the experiment,
mainly the number of samples and the count rate, could be analyzed
using statistical methods. We found that Poisson statistics provided
the best fit to our data. By overlaying the Poisson distribution of the
estimated parent population over the sample population, we were able
to see the correlation between the samples acquired during the experi-
ment and the theoretical Poisson probability distribution function. The
Gaussian also provided a good fit to the data as we increased the num-
ber of counts that we were receiving. The Gaussian approximation got
increasingly better as the number of counts went up. These approxima-
tions provided us with a way to quantify some of the physical limitations
of our experiment. We found that our approximations improved by a
factor of VN where N is the number of experiments we ran for each
data set.

1 Introduction

The statistical properties of photons are important to understand when study-
ing astronomy. We know that there is a certain quantum mechanical proba-
bility that a photon will or will not be released from an excited atom. In this
experiment, we attempt to analyze this probability from a statistical point of
view. We will do this by examining the error and variability of photon counts
as we vary certain parameters of the experiment.

2 Equipment and Methods

For this lab we used a Photomultiplier Tube (PMT), a dark box, and an LED
light. The PMT itself is a very sensitive instrument that is used to detect
individual photons from a light source. The light source, in this case, was
an LED light. We were able to vary the intensity of the LED to control the
average number of photons being sent into the PMT. Due to the sensitivity
of the PMT, the device needed to be enclosed in a dark box along with other
light reducing materials to ensure minimal exposure to outside light sources



that could damage the device. The PMT works on a basis similar to that of
the photo-electric effect. The incoming photons strike a photoemissive diode
which emits electrons due to the photo-electric effect. These electrons are then
accelerated through additional electrodes which affectively amplify the initially
low signal, allowing for it to be collected at the final anode to be measured.
All of this is attached to a local SUN workstation which provides us access to
the digitized PMT data.

Various samples of data were gathered from the PMT at different rates.
We had control over how bright the LED source was, how many samples we
were collecting for each data set, and the rate at which the PMT would collect
datal. We can calculate the time interval, in seconds, that the PMT was active
for during each experiment by taking the inverse of the rate (t = ﬁ) For
example, a rate of 1000 Hz corresponds to 1 millisecond. The data acquired
was then read into IDL where we created histogram plots. We used these plots
to analyze some of the statistical properties of the light we were receiving from
the LED. The data for this lab was gathered by myself on two separate days.
The first set of data was gathered on September 4, 2006. The second set was
gathered on September 8, 2006.

3 Statistics

In order to understand the statistical properties of light, we need to first un-
derstand the differences between the empirical and theoretical approaches to
studying our data.

3.1 Parent Distribution and Sample Populations

The parent distribution is obtained from taking the limiting values of the
sample as the number of experiments go to oo. This is important because the
parent population tells us the exact distribution of the data points. This, in
turn, gives us the chance to examine the error associated with making mea-
surements. Experimentally, the best estimation we can get for the mean of
the parent population p is the mean Z of the data with the highest number of
samples and the best estimation for the standard deviation o is the deviation
s obtained from the same data. The following equations? are for a discrete
distribution.

For the parent population:

1 N
= N 2T (1)

!The rates in all of the experiments were taken in Hz
2from Statistics handout equations 2.5, 2.4, 2.10, 2.11
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3.2 Poisson Statistics

One type of theoretical distribution function that is of interest to us is the
Poisson distribution. The Poisson distribution is derived from the Binomial
distribution by taking the approximation that the average number of “suc-
cesses” is very small when compared to the number of experiments.? In other
words, 4 < N. Another way to think about it is that the probability of “suc-
cess” for any one experiment is very small (p < 1). One of the most common
examples of this is radioactive decay. The probability of any single atom de-
caying is very small. However, when we are looking at a very large number
of atoms, we will be able to see some atoms decaying. The probability of this
happening can be modeled by the Poisson distribution function.

x

Po,p) = 4 (5)

Note that the standard deviation for the Poisson distribution is equal to the
square root of the mean. This is shown in equation 6:

o® =@ —w’) = Yl —wre ) = (6)

3.3 The Gaussian

Another type of theoretical distribution function is the Gaussian distribution.
The Gaussian is a normal distribution function that is symmetric about its
center, unlike the Poisson distribution. It also extends to oo in both directions.
This means that the Gaussian states that there is a finite probability, albeit
very low for some values, that we could get a measurement of any value between
—00 to co. Below is the equation for the Gaussian®:

Pz, o) = ——e}(5*)’

oV 2w

(7)

3For more information on the Binomial distribution and the derivation of the Poisson
Distribution refer to the Statistics lab handout (p.25-31).
4Taylor p. 121-135



4 Results

4.1 Experimental Errors

As I examined some of the data, I noticed that there were several plots that
contained one or two isolated points at a great distance away from the mean.
This occurred when I got data with a high number of photon counts (i.e. low
rates). Most of these points were much lower than the mean value. I turned
to statistics to analyze whether these counts were feasible or not. Statistics
tells us that for a normalized distribution, 99.994% of the data lies within 4
standard deviations (o) from the mean. For a non-normalized distribution,
the same percentage lies within about 7 standard deviations from the mean. I
ended up choosing 7 standard deviations to be the limit for whether I should
include the counts or not in my data. Therefore, anything that fell outside of
this range I interpreted as dropped counts due to experimental error or error
from the equipment.
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Figure 1: Here is an example of one of the plots where I saw a dropped
count. You can see one data point at about 2.5 seconds after the start of the
experiment that is isolated from the rest of the counts.

4.2 Histograms

Figure 2 shows the histogram plots of some of my data ranging from a high rate
to a low rate. Plotted on top of the histograms are the Poisson and Gaussian
distributions of the data to show the frequency of the number of counts that
we should be getting based on these statistical approximations. One problem
that we encountered was how to scale the normalized theoretical distribution
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Figure 2: All of the above Histograms contain 1000 samples of data at different
rates. They are also all overlayed with a Gaussian and Poisson model of the
data. The Gaussian is the dotted line and the Poisson is the solid line. (a)—
Rate of 5000Hz; (b)—Rate of 1250 Hz; (c)—Rate of 1000 Hz; (d)—Rate of
833 Hz; (e)—Rate of 500 Hz; (f)—Rate of 322 Hz.



functions to reflect the measured values. To solve this, we had to understand
that the normalized Poisson and Gaussian curves tell us the probability that
we would get a certain measurement if we did one experiment. In order to scale
it up to reflect how many times we should be getting a certain measurement
after doing N experiments, we had to multiply the theoretical curves by N.

As you can see from figure 2, the Poisson distribution works very well for
experiments in which we get low counts. In the case of our 5000 Hz experiment,
we have about 2 photons for our mean. We know that inside the LED there
are a lot of atoms (on the order of Avogadro’s number 10?%) that can emit
photons. However, only a small fraction of these will actually emit photons.
Thus, in the regime of our experiments, Poisson statistics matches very well
with our sampled data. Additionally, you can see the asymmetry in the data
that is a signature of low u Poisson statistics. As we go higher, the sample
distribution becomes less asymmetric and we can see that the Gaussian very
quickly becomes a reasonable fit to the data.

One problem with the Poisson distribution, however, is how quickly it be-
comes difficult to calculate. By just examining the equation directly (equation
5), we can see that the p® part of the numerator becomes very large very
quickly as we increase p. Thus, we run into computational problems for any
data sets where we get a high mean. This is where the Gaussian distribution
becomes useful. However, we have to remember to be careful whenever we use
the Gaussian for any real data because of the fact that the Gaussian gives a
finite possibility of getting any measurement (including negative values). For
this photon experiment, there is zero possibility that we can get a negative
measurement. However, for a high enough p, the probability of getting nega-
tive measurements based on the Gaussian becomes so small that it is basically
ZETO.

4.3 More Evidence of Experimental Errors

We can further see the errors in our experiment when we examine the mean
versus variance of our data as we receive an increasing number of photon
counts. Figure 3 reveals a deviation of the variance from the mean as we in-
crease the mean®. We know that the Poisson distribution should fit well with
our data because the number of atoms within our LED is much greater than
the number of photons that we are receiving. We also know that for Poisson
statistics, u = o?. Figure 3 shows that experimentally this relationship slowly
falls apart as we increase the mean. We also saw from above in my discussion
in section 4.1 that at lower rates (i.e. high number of counts) we got more
experimental errors from dropped counts and other kinds of erroneous data.

5The data for the Mean vs. Variance plot is different from the original histogram plots.
Here I turned up the LED intensity so that the mean becomes larger more quickly as I
decreased the rate between each measurement. This better shows the divergence of the
variance away from the mean vs. mean line as we increase the number of counts we are
receiving.



These errors serve to increase the variance of our data, so that would be the
most likely explanation of the deviation of the variance from the mean. An-
other explanation could be that the variance is actually statistically deviating
from the mean and that the Poisson distribution is actually becoming a worse
approximation for the sample distribution. However, this is unlikely because
even if we are getting photon counts on the order of a million, the photon
counts are still much smaller than the number of atoms in the semiconductor
diode of the LED that is emitting the light®.
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Figure 3: The plotted points are the mean vs. variance of a specific rate. The
solid line is the mean vs. mean line so we can visualize the deviation of the
variance from the mean as the mean increases.

4.4 Standard Deviation of the Mean

It’s intuitive that the more samples we take the more accurate we can get our
mean . What’s not intuitive, however, is how to quantify by how much
our accuracy improves as we increase the number of samples (N) we col-
lect. In order to quantify this data, we examined how error on the mean
changes as we increase the number of samples. For my experiment I decided
to vary the number of samples taken by taking increasing exponentials of 2
(i.e. 2',22,23 2% 25 212)  Firstly, we can see how accurate the calculated
mean values are for each data set as we increase the number of samples col-
lected by comparing the mean of the means for all of the different sample sizes.
So after taking the mean of each individual data set, I took the mean of all
10 data sets with the same number of samples. This is plotted in figure 4. As

6The number of atoms in a single drop of water is on the order of 1023



you can see in the figure, the mean of the means seem to be approaching a
constant as the number of samples increases. This makes sense because as you
take more samples, the estimation of the mean approaches that of the parent
population (equation 1).

Mean of the Means
16 T T T T T T T T T

Mean of the Means
=
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\

10 100 1000 10000
Number of Samples

Figure 4: This is a figure of the “Mean of the Means”. As you can see here,
the mean of the means are, on average, constant. However, you can see that
for a lower number of samples, the mean of the means is not as consistent
as the ones for higher numbers of samples. It appears that as the number of
samples tends towards oo, the means converge toward a specific number.

The accuracy of the data can be further examined by looking at the stan-
dard deviation of the means (SDOM). After calculating the mean of each set
of data, the deviation between the means of the data can be calculated by
taking the standard deviation of all the mean values. If the accuracy in mea-
suring the counts per sample improves as we increase the number of samples
for each data set, we would hope that the standard deviation of the means will
decrease as we take more samples. I have plotted the standard deviation of the
means in figure 5. We can see from the figure that the deviation does indeed
decrease as we take more samples of data. The solid line plotted in figure 5 is
the theoretical prediction of how the standard deviation of the means should
behave based on the data. The theoretical prediction is based on equation 8.

Ox

8
VN ®)
Equation 8 is the theoretical equation for the standard deviation of the mean.
This, in effect, tells us how accurate our means are by giving us an error bound

Oz =

"see Taylor p.102-103



for the actual p of the parent population. So for my data, the best estimate I
have for the mean of the parent population is the mean of the data set with
212 = 4096 number of samples. This has an SDOM of 0.0581. Therefore, we
can state the accuracy of this mean value to be 13.6832 4+ 0.0581. This error
goes to zero as N approaches co. Additionally, we can see from the equation
that in order to improve the accuracy of our mean by, say, a factor of 2, we
need to take 4 times more samples. This is due to the inverse square root
dependency on N for the SDOM. Therefore, if we have n more samples of
data, our error (SDOM) decreases by a factor of /7.
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Figure 5: This is a plot of the “Standard Deviation of the Means”. The
points are the standard deviation of the means based on the data. The line is
the theoretical prediction of how the standard deviation of the means should
behave based on the data.

This brings about the question of whether or not we can construct a light
source that would not show any variations in the count rate. There is not
any possible way to do this because the variations come from the quantum
mechanical description of the system stating that there is a probability for
whether or not a photon will be emitted from the atom. This is independent
of how many samples we try to take. Therefore, even if we take an infinite
amount of samples, the individual variations between the photon counts will
not be zero. What will be zero, however, would be the deviation between the
average means between each data set. If we can take an infinite amount of
samples for each data set, each data set as a whole should give us the same
number of photon counts as an average.



5 Summary of Conclusions

We found that our sample distribution matched fairly well with Poisson statis-
tics. Furthermore, the Gaussian distribution of the data very quickly became
a good fit to the data. Both experimental and statistical errors were appar-
ent in our experiment as well. Experimental errors came from the equipment
dropping counts in some cases. This could be somewhat minimized by limiting
the range of our data to a few standard deviations from the mean to eliminate
some of the more erroneous data. Even after doing this, however, there was
still enough experimental error that could be seen from figure 3. Statistical
errors, on the other hand, provided us ways to quantify the error in our data.
By calculating and examining the standard deviations, we could analyze how
the error changes as we vary different parameters of the experiment. In the
end, we found that decreasing the rate or increasing the brightness of the LED
created more experimental errors, but did not change the statistical errors
very much. The Poisson and Gaussian were very good fits for all of our data
sets. Increasing the number of samples for each data set, on the other hand
did show a change in the error of our approximations. We found that as we
increased the number of samples for each data set, the error that we can state
for our mean would decrease by a factor of V/N. Therefore, to increase the
accuracy of our data by a factor of 2, we had to take 4 times the number of
samples for each data set.
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