Spectrograph Basics

James R. Graham 11/17/2009

Dispersive Spectrometers

- Dispersive spectrometers are a class of instruments that encode wavelength as position on a focal plane detector
- Dispersion can be caused by refraction or diffraction
- Key element is
 - Prism $(dn/d\lambda \neq 0)$
 - Grating
- Gratings are favored
 - Flexible
 - Transmission or reflection
 - Groove spacing
 - Plane or powered surface
 - Efficient
 - Grating can be blazed
 - Lightweight

Spectrometers as Imagers

- A spectrometer is fundamentally a device which makes an image of a source
 - The position of the image of the source depends on wavelength
- Typically the spectrometer makes an image of an aperture or slit
 - In the solar spectrometer, the spectrometer makes an image of the light exiting an optical fiber
- The location and size of the image is determined jointly by the laws of geometric optics and the grating equation

Schematic Spectrometer

grating normal. For a transmission grating they have the same sign if the diffracted ray crosses the normal.

Condition for Constructive Interference

Orders

Transmission grating $1/\sigma = 600 \text{ mm}^{-1}$

Positional Encoding

• The angle is given by the grating equation and the position set by the camera focal length

Mapping Wavelength to Angle

• Holding α and *m* constant, β varies with λ

Mapping Wavelength to Position

• Holding α and *m* constant, *p* varies with λ

Dispersion

- Dispersion gives the angular spread of diffraction, $\delta\beta$, for a source with wavelength spread, $\delta\lambda$
 - Start with the grating equation and hold the angle of incidence, α , and the order, *m*, constant

$$m\lambda = \sigma(\sin\alpha + \sin\beta)$$
$$m\delta\lambda = \sigma\cos\beta\delta\beta$$
$$\left(\frac{\partial\beta}{\partial\lambda}\right)_{\alpha m} = \frac{m}{\sigma}\frac{1}{\cos\beta}$$

Dispersion

 Over a limited range of wavelength dispersion is ≈ constant

– Linear relation between wavelength & position

Dispersion

- With higher dispersion it is possible to distinguish closely spaced wavelengths
- High dispersion corresponds to
 - High order (large *m*)
 - Narrow grooves/high groove density
 - Large $\beta (\approx \pi/2)$

$$\left(\frac{\partial\beta}{\partial\lambda}\right)_{\!\alpha,m} = \frac{m}{\sigma}\frac{1}{\cos\beta}$$

Spectral Resolution

$$\Delta \alpha = \Delta s / f_{col}, \quad \Delta \beta = \left(\frac{\partial \beta}{\partial \alpha}\right)_{\lambda} \Delta \alpha, \quad \Delta p = f_{cam} \Delta \beta$$

Spectral Resolution: the Diffraction Limit

- Even if the input is a point source, the image has a finite size on the CCD array, Δp , due to diffraction
 - The angular size of camera images, $\delta\beta = \lambda/D_{cam}$, limits the spectral resolution

$$\delta \lambda = \frac{\partial \lambda}{\partial \beta} \delta \beta$$
$$= \frac{\sigma \cos \beta}{m} \delta \beta$$
$$\delta \beta = \frac{\lambda}{D_{cam}}$$
$$R = \frac{\lambda}{\delta \lambda} = \frac{(\sin \alpha + \sin \beta)}{\cos \beta} \frac{D_{cam}}{\lambda} \approx 2 \frac{D_{cam}}{\lambda} \tan \theta_B$$

Spectral Resolution: the Diffraction Limit

- $D_{cam} = 75 \text{ mm}$
- $\tan \theta_B = 2$
- $\lambda = 0.632 \,\mu \mathrm{m}$

$$R_{DL} \approx 470,\!000$$

Slit Limited Spectral Resolution

$$\Delta \alpha = \Delta s / f_{col}, \quad \Delta \beta = \left(\frac{\partial \beta}{\partial \alpha}\right)_{\lambda} \Delta \alpha, \quad \Delta p = f_{cam} \Delta \beta$$

Slit Limited Spectral Resolution

- Generally, the source is not a point
 - If the extent is greater than the diffraction blur then the spectrometer resolution "slit limited"

$$\begin{split} &\delta\alpha = \frac{\delta s}{f_{col}} \\ &\delta\beta = \left(\frac{\partial\beta}{\partial\alpha}\right)_{\lambda,m} \delta\alpha = \frac{\cos\alpha}{\cos\beta} \delta\alpha = \frac{\cos\alpha}{\cos\beta} \frac{\delta s}{f_{col}} \\ &\delta\beta = \left(\frac{\partial\beta}{\partial\lambda}\right)_{\alpha,m} \delta\lambda = \frac{m}{\sigma\cos\beta} \delta\lambda \\ &\frac{m}{\sigma\cos\beta} \delta\lambda = \frac{\cos\alpha}{\cos\beta} \frac{\delta s}{f_{col}} \quad \text{Hence, } R_{SL} = \frac{\lambda}{\delta\lambda} = \frac{\sin\alpha + \sin\beta}{\cos\alpha} \frac{f_{col}}{\delta s} \end{split}$$

Which is bigger R_{DL} or R_{SL} ?