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1 Signal
The CCD in the spectrometer employs the photovoltaic effect to measure the intensity of light, Iv,
at frequency v. The number of photoelectrons in a given pixel, Npe, per exposure depends on the
integration time, Δt, the solid subtended by a pixel, ΔΩ, and the spectral band-pass, Δv, covered
by that pixel,

Npe = ηIν cosθΔνΔtΔΩ hν , (1)

where θ is the angle between pixel normal and the incident beam, η is the quantum efficiency (η
= 1 for a perfect pixel), and h is Planck’s constant. Each pixel also generates a “dark current”, id,
even when there is no illumination, so that the total charge is N = Npe + Nd, where Nd = id Δt.

During readout of the CCD pixel the accumulated electric charge is deposited on a capacitor of
capacitance C, thereby generating a voltage

Vpe = Ne C , (2)

where e is the charge of the electron. Typical values of C are a few pF; one electron (1.60 × 10-19

C) on 1 pF generates a signal of 160 nV.

The signal generated by the spectrometer is a number returned by a digital circuit that converts
voltage to a 12-bit number (0-4095): this number is directly proportional to the voltage. By
convention, the signal from the analog to digital converter (ADC) is measured in ADUs (analog
to digital units). The voltage measuring circuit has a constant of proportionality, g, with units of
ADU per volt. Thus, the number that ends up in your data file is

ADU = gNe C + ADU0 . (3)

The quantity ADU0 is an offset or bias—a non-zero count that is returned even when the number
of photoelectrons is zero. Note that the combined quantity ge/C has units of ADU per electron.
For convenience, this quantity is often known simply as the gain.

We can use our knowledge of Poisson statistics applied to counting photoelectrons to
deduce the gain factor in Eq. (3). First, notice that Eq. (3) implies that the signal in ADU depends
on the number of photoelectrons and the bias value, i.e.,

ADU = ADU N ,ADU0( ) . (4)

To find the error in the measured signal we can apply the fundamental formula for error
propagation, which states that the variance in some quantity f, which is a function of u, v, w, … is
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where we have assumed that u, v, w, … are independent quantities with zero covariance.

2 Error propagation
Two types of noise contribute to the standard deviation of ADU measured, or σADU. By applying
the law of error propagation, Eq. (5), to Eq. (3) we find
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again assuming zero covariance between these two noise sources. The first partial derivative is
just the gain, ge/C, while the second is unity. The variance σ2

N in the first term is associated with
Poisson noise, for which we know that σ2

N = N. In general there is some noise associated with
each measurement, σ0, which is known as the read noise. Thus, Eq. (6) simplifies to
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By substituting geN/C = ADU - ADU0 from Eq. (3) we have
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2 . (8)

Thus, a plot of the variance, σ2
ADU, versus the bias subtracted signal, ADU – ADU0, should be a

straight line with slope equal to ge/C and intercept of read noise squared.

3 A few notes
The bias is measured by taking short exposures. It is best to perform this experiment to measure
the gain and read noise with a bright source and short exposures (10 ms) so that dark current is
negligible. In this case, the quantity ADU0 is measured by turning off your light source and
repeating the experiment with the same exposure time.

We have assumed that bias subtraction is perfect and that ADU0 is known with perfect precision.
Is this a correct assumption?


