Least-Square Fitting

James R. Graham

9/11/2009

A straight line fit

Suppose that we have a set of N observations $\left(x_{i}, y_{i}\right)$ where we believe that the measured value, y, depends linearly on x, i.e.,

$$
y=m x+c .
$$

Given our data, what is the best estimate of m and c ? Assume that x_{i} (the independent variable) is known exactly, and y_{i} (the dependent variable) is drawn from a Gaussian probability distribution function with standard deviation, $\sigma_{i}=$ const. Under these circumstances the most likely values of m and c are those corresponding to the straight line with the total minimum square deviation, i.e., the quantity

$$
\chi^{2}=\sum_{i}\left[y_{i}-\left(m x_{i}+c\right)\right]^{2}
$$

is minimized when m and c have their most likely values. Figure 1 shows a typical deviation.

Figure 1: Some data with a least squares fit to a straight line. A typical deviation is illustrated.

Mathematically, the best values of m and c are found by solving the simultaneous equations,

$$
\frac{\partial}{\partial m} \chi^{2}=0, \quad \frac{\partial}{\partial c} \chi^{2}=0
$$

Evaluating the derivatives yields

$$
\begin{aligned}
& \frac{\partial}{\partial m} \chi^{2}=\frac{\partial}{\partial m} \sum_{i}\left[y_{i}-\left(m x_{i}+c\right)\right]^{2}=2 m \sum_{i} x_{i}^{2}+2 c \sum_{i} x_{i}-2 \sum_{i} x_{i} y_{i}=0 \\
& \frac{\partial}{\partial c} \chi^{2}=\frac{\partial}{\partial c} \sum_{i}\left[y_{i}-\left(m x_{i}+c\right)\right]^{2}=2 m \sum_{i} x_{i}+2 c N-2 \sum_{i} y_{i}=0
\end{aligned}
$$

Which can conveniently be expressed in matrix form,

$$
\left(\begin{array}{cc}
\sum x_{i}^{2} & \sum x_{i} \\
\sum x_{i} & N
\end{array}\right)\binom{m}{c}=\binom{\sum x_{i} y_{i}}{\sum y_{i}}
$$

and solved by multiplying both sides by the inverse,

$$
\binom{m}{c}=\left(\begin{array}{cc}
\sum x_{i}^{2} & \sum x_{i} \\
\sum x_{i} & N
\end{array}\right)^{-1}\binom{\sum x_{i} y_{i}}{\sum y_{i}} .
$$

The inverse can be computed analytically, or in IDL it is trivial to compute the inverse numerically, as follows.

Example IDL

```
; Test least squares fitting by simulating some data.
nx = 20 ; Number of data points
m = 1.0 ; Gradient
c = 0.0 ; Intercept
x = findgen(nx) ; Compute the independent variable
y = m*x + c + 1.0*randomn(iseed,nx) ; Compute the
                                    ; dependent
                                    ; variable and
                                    ; add Gaussian
                                    ; noise
plot,x,y,ps=1
; Construct the matrices
ma = [ [total(x^2), total(x)],[total(x), nx ] ]
mc = [ [total(x*y)],[total(y)]]
; Compute the gradient and intercept
md = invert(ma) ## mc
```

```
; Overplot the best fit
oplot, x, md[0,0]*x + md[0,1]
end
```

See Figure 2 for the output of this program.

Figure 2-Least squares straight line fit. The true values are $\mathbf{m}=1$ and $\mathbf{c}=\mathbf{0}$.

