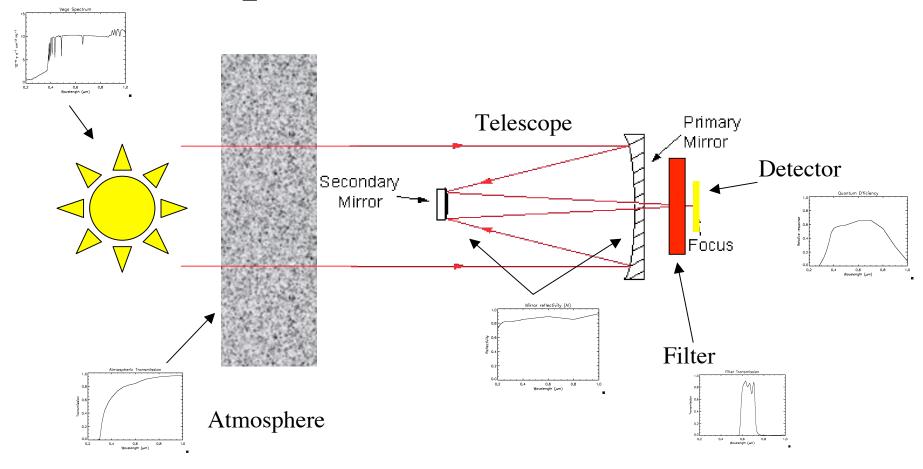
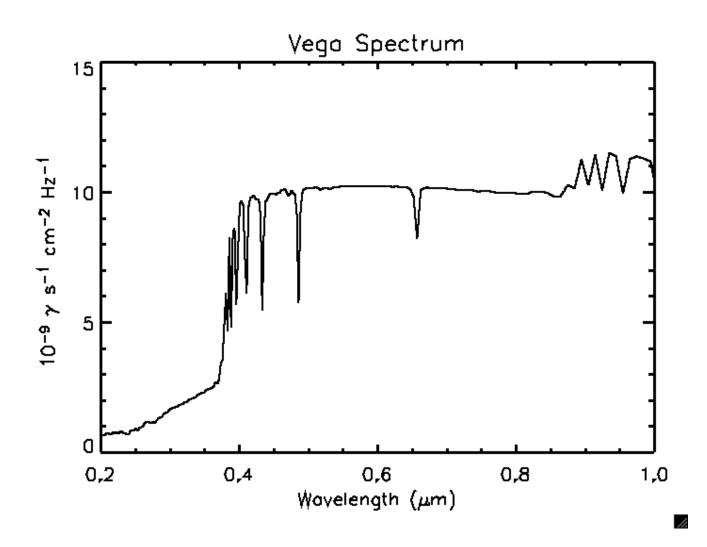
From Stars to Photoelectrons

James R. Graham 10/6/2008

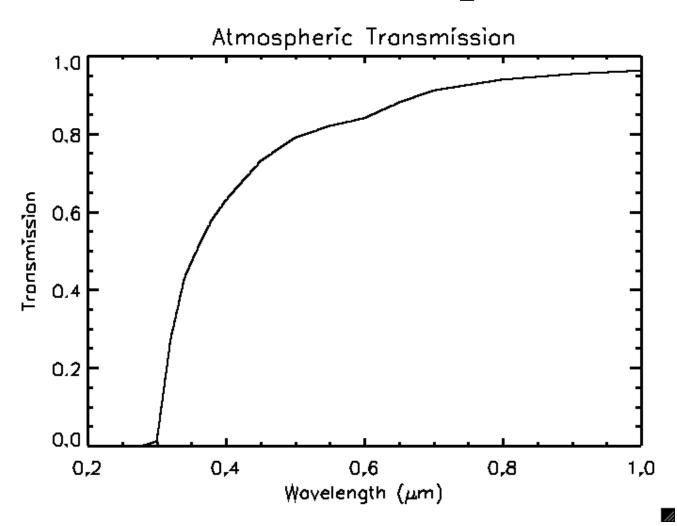
Step 1: The Photon Path



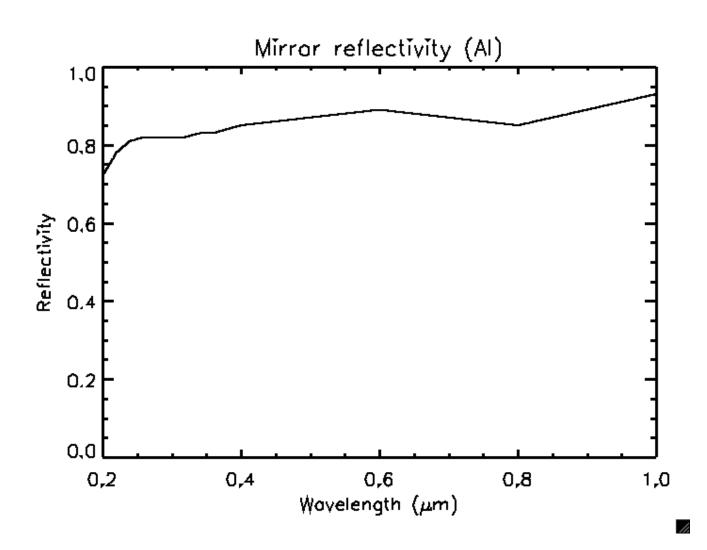
Spectrum of Vega



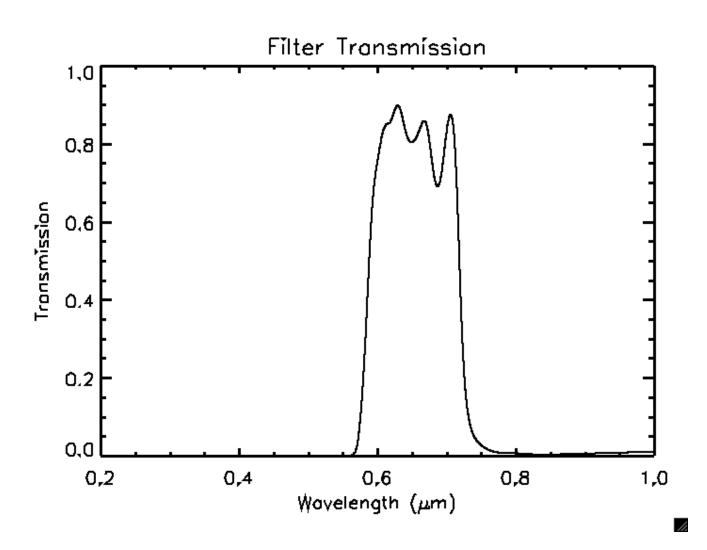
Scattering & Absorption by the Earth's Atmosphere



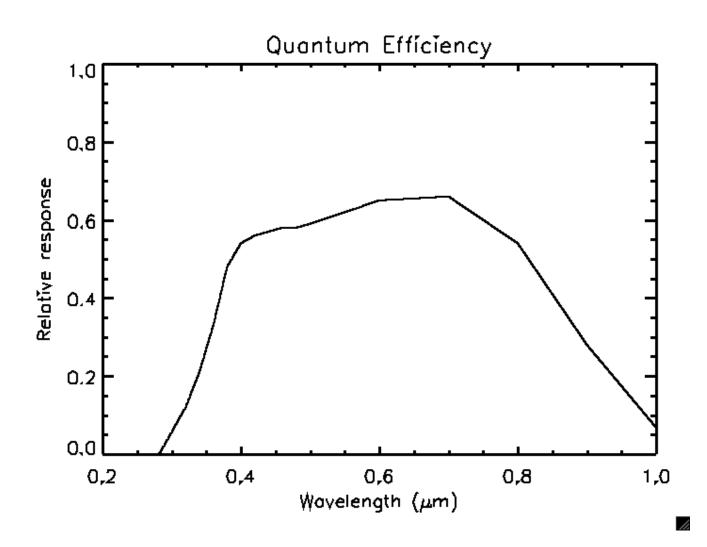
Mirror Reflectivity



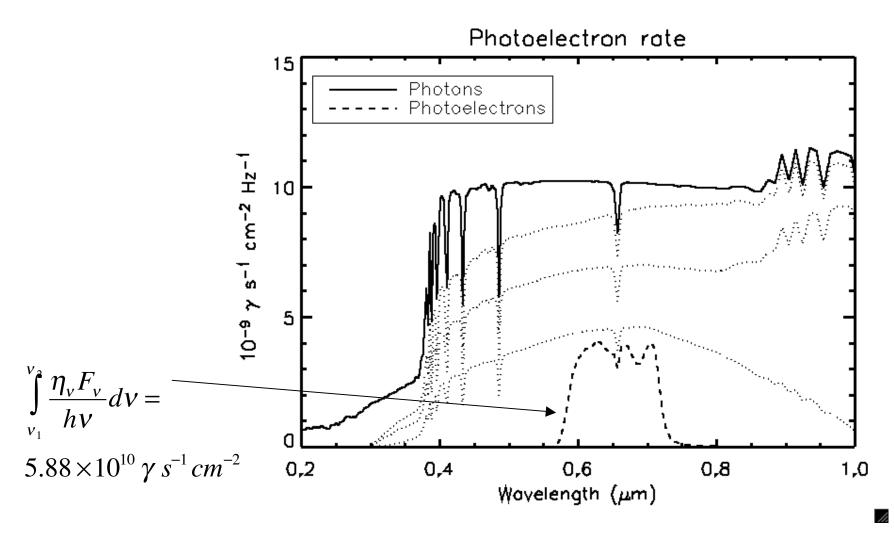
Filter Transmission



Detector Efficiency



System Throughput



Step 2: Systematic Errors

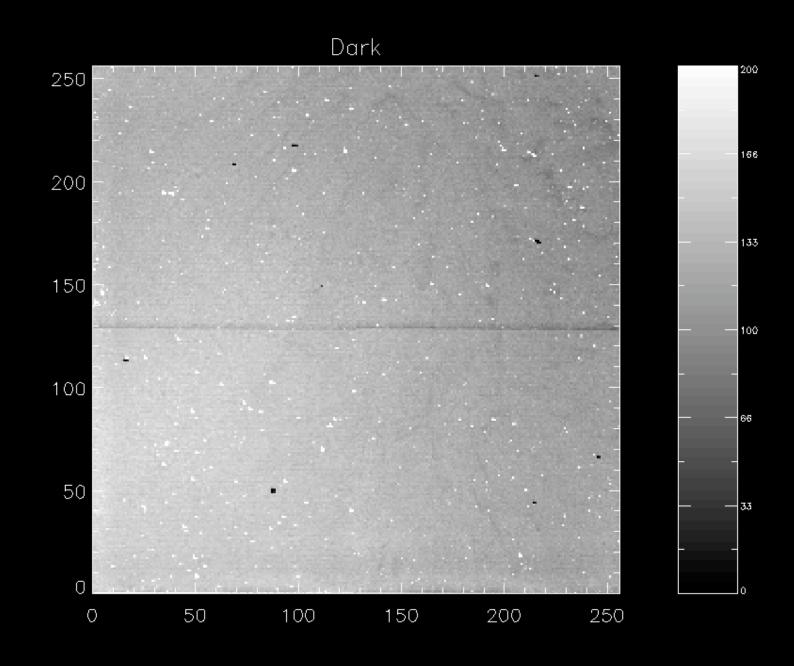
- Imaging detectors suffer from a number of errors that must be corrected before the data can be used for photometry
- Goal is to make the DNs from the FITS files proportional to the brightness of the astronomical source

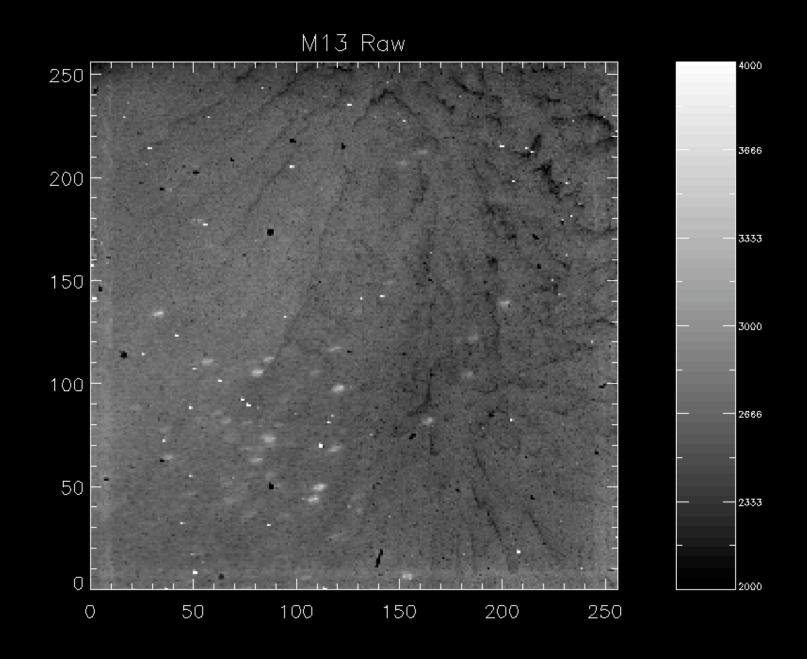
Bias & Dark Current

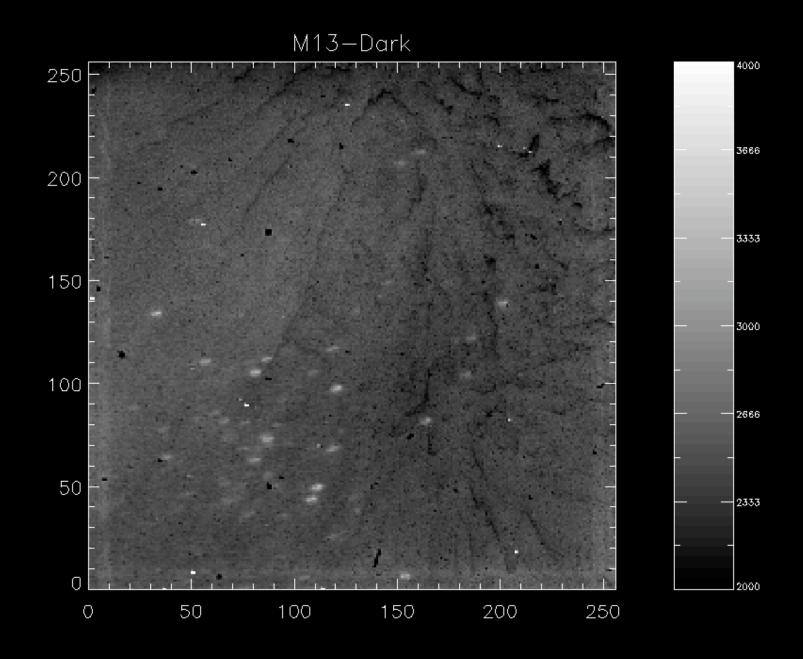
- Even a zero second exposure gives nonzero DN
 - Dark current masquerades as real signal
 - Dark current & bias (constants DC offset) can be removed either by subtracting
 - 1. A dark frame of the same exposure time as the science image—takes care of bias too, or
 - 2. An image of blank sky—takes care of bias & dark, and also subtracts the sky brightness! (can be hard to find blank sky)

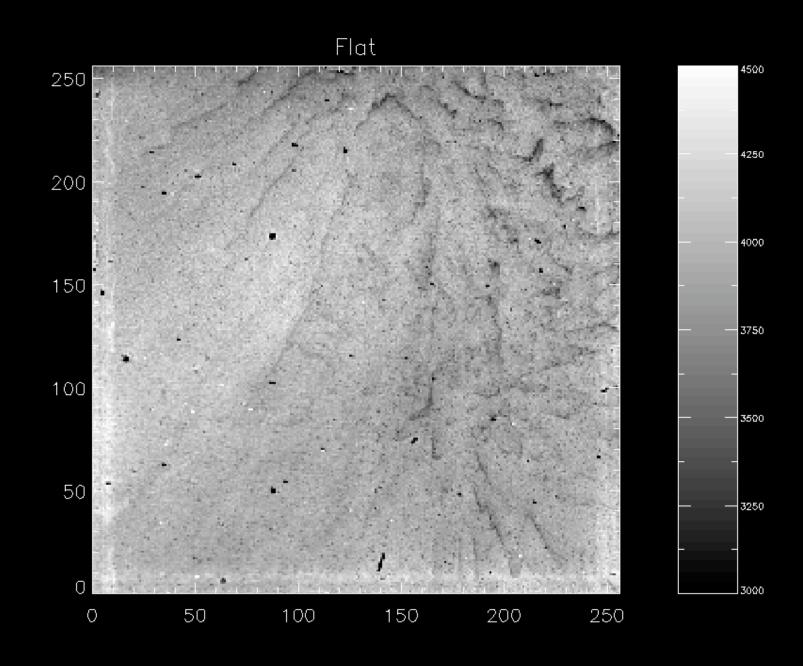
Relative Pixel Gain a.k.a. Flat Field

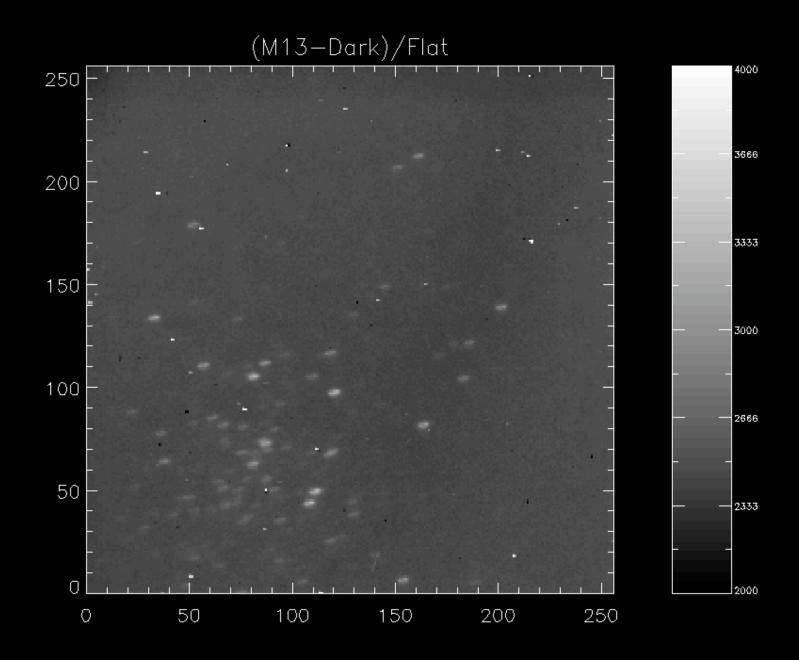
- Every pixel in the detector array has a slightly different response to light
 - Some pixels are more efficient than others
- Need to correct for pixel-to-pixel variations by constructing a flat field
 - Make a flat field by observing a uniform source,
 e.g., the twilight sky
 - Divide dark-subtracted images by the flat field

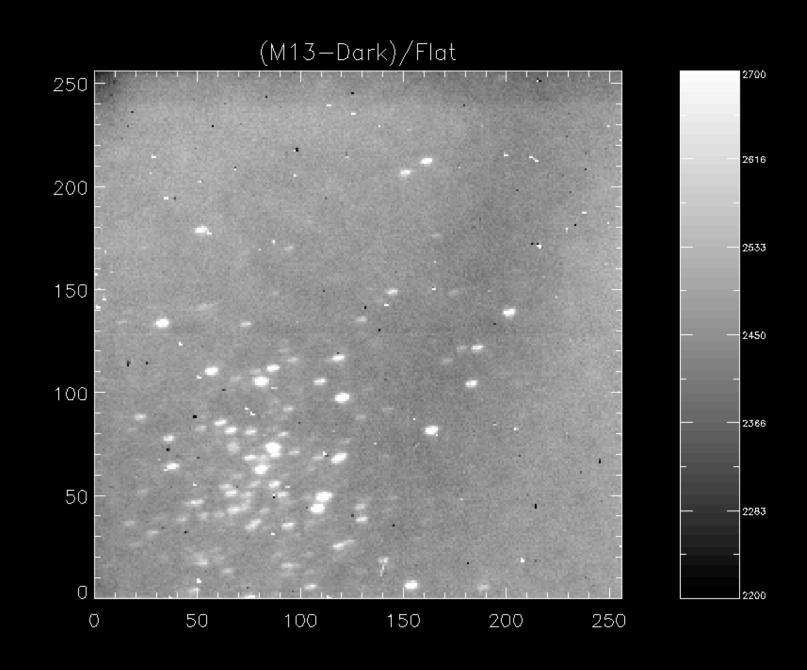






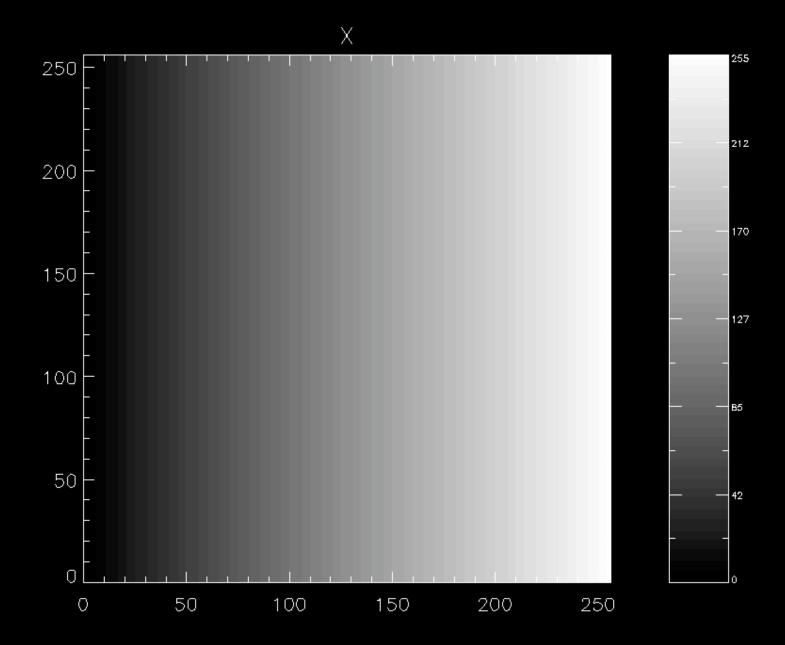


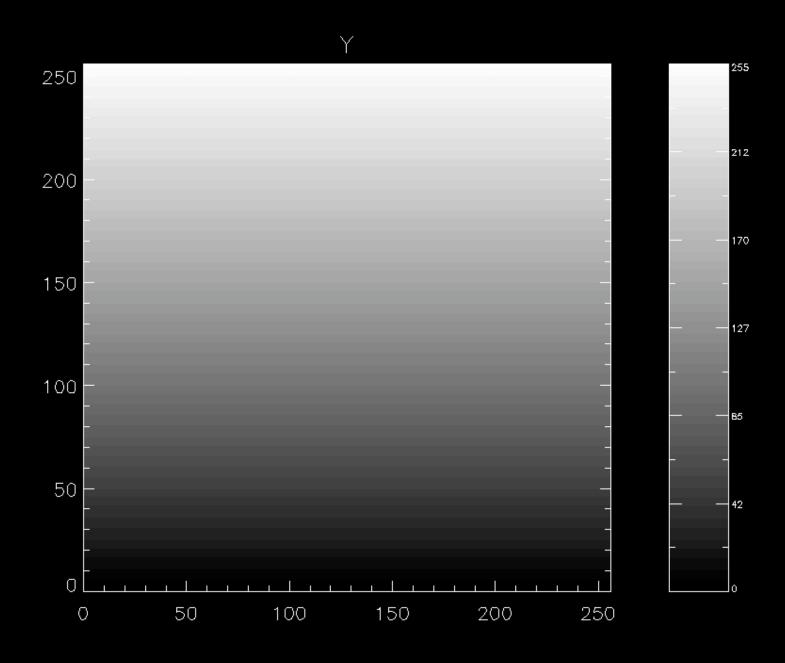


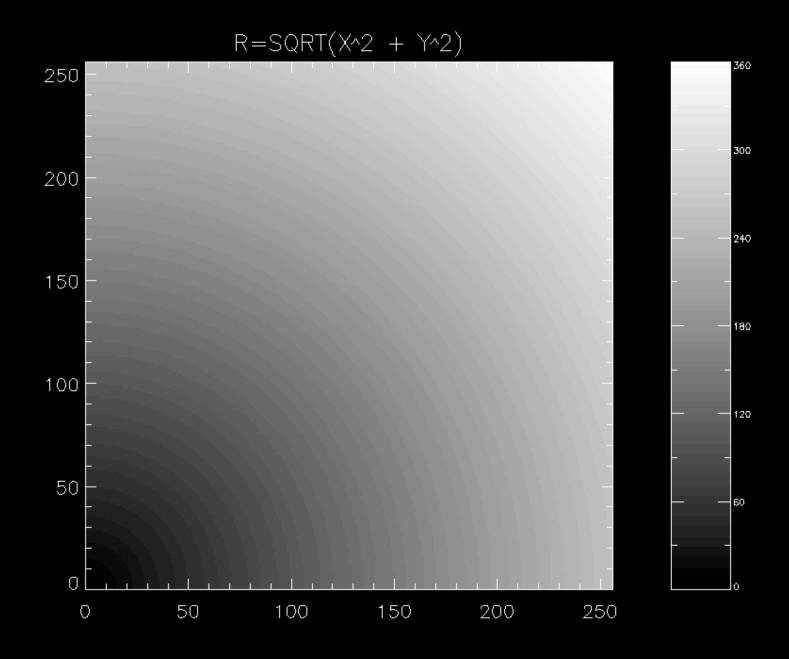


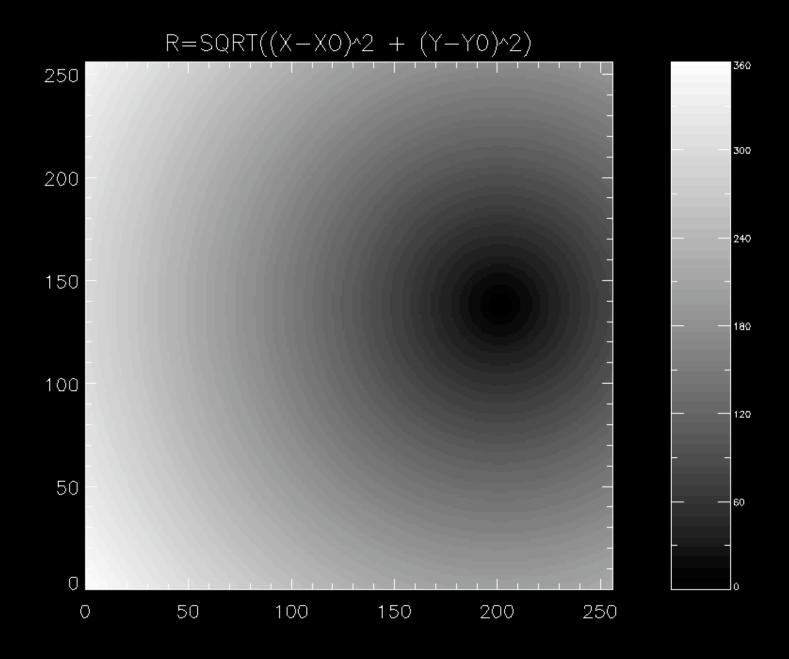
How Bright is that Star?

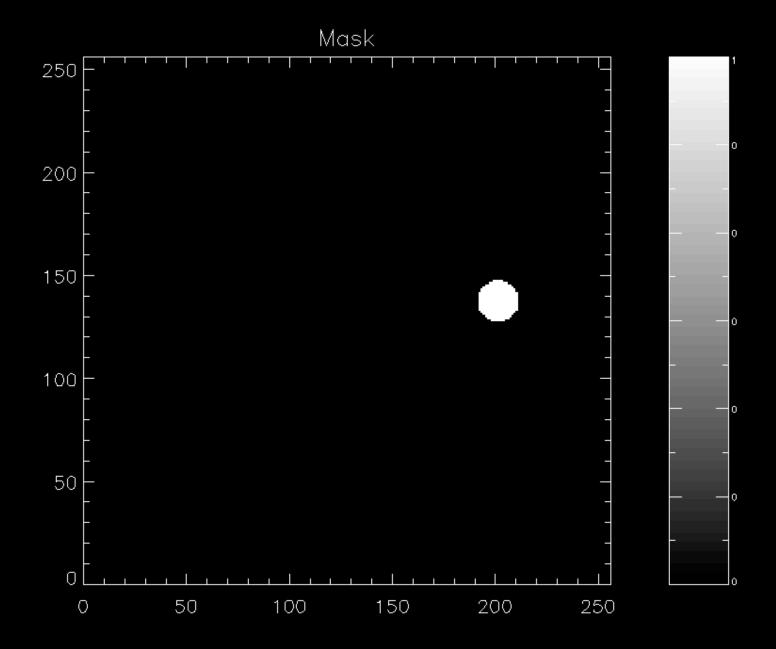
- The light from a star is spread over several pixels
- How do we sum the light to get a measure of the total signal from the star?
 - 1. Identify the location of the star (RDPIX)
 - 2. Select the associated pixels by making a mask
 - 3. Sum up the light (TOTAL)
 - Subtract the sky background if necessary

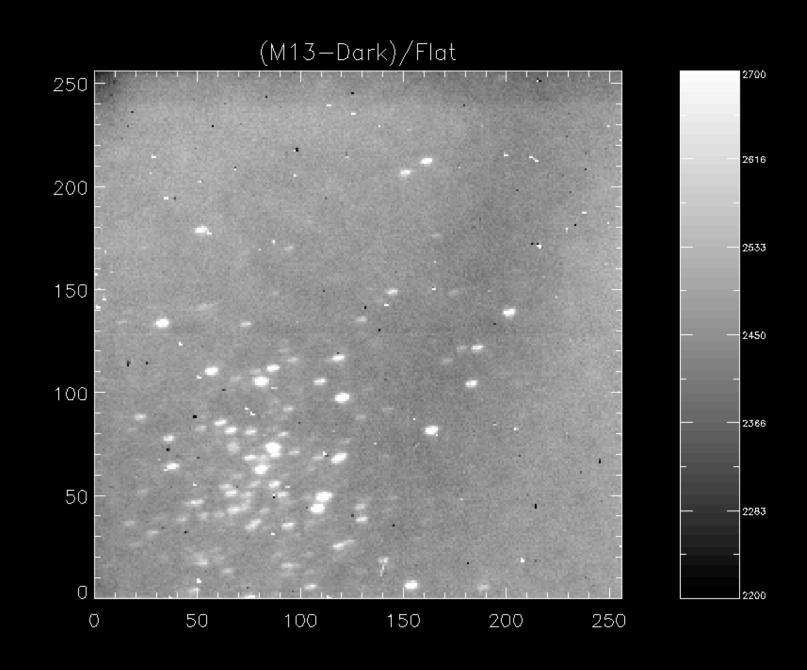


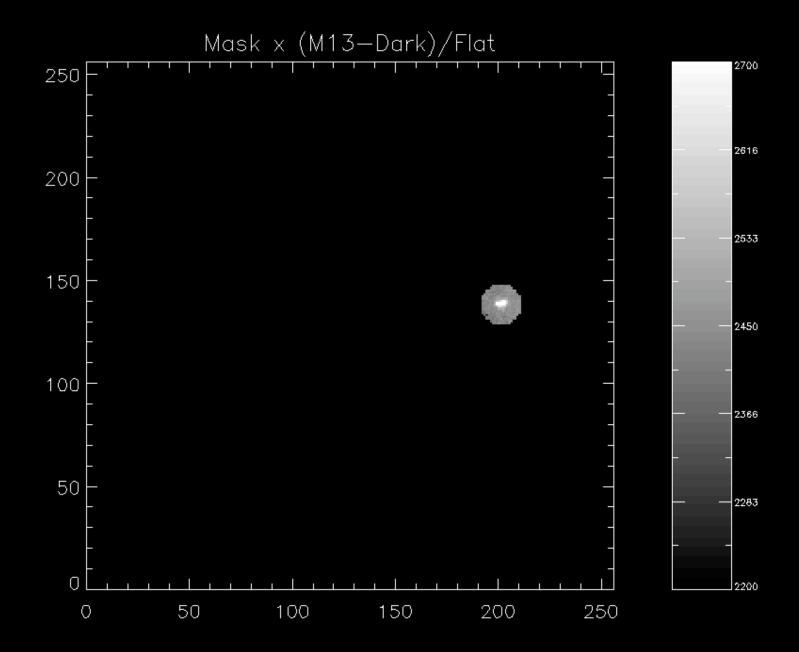


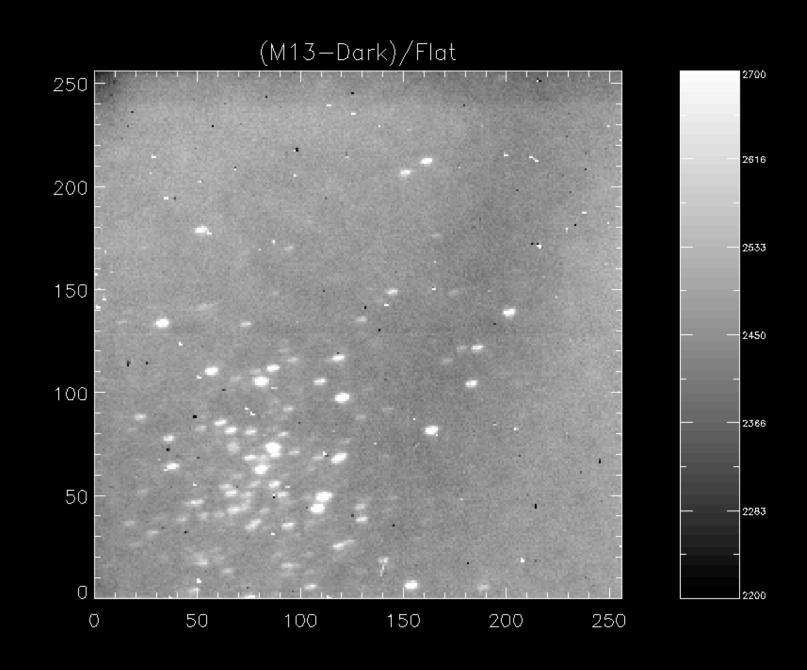


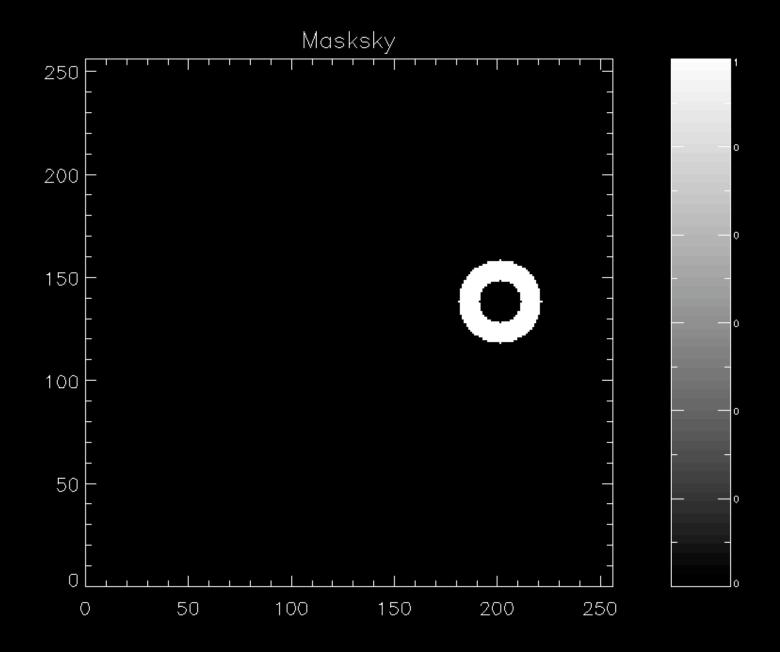


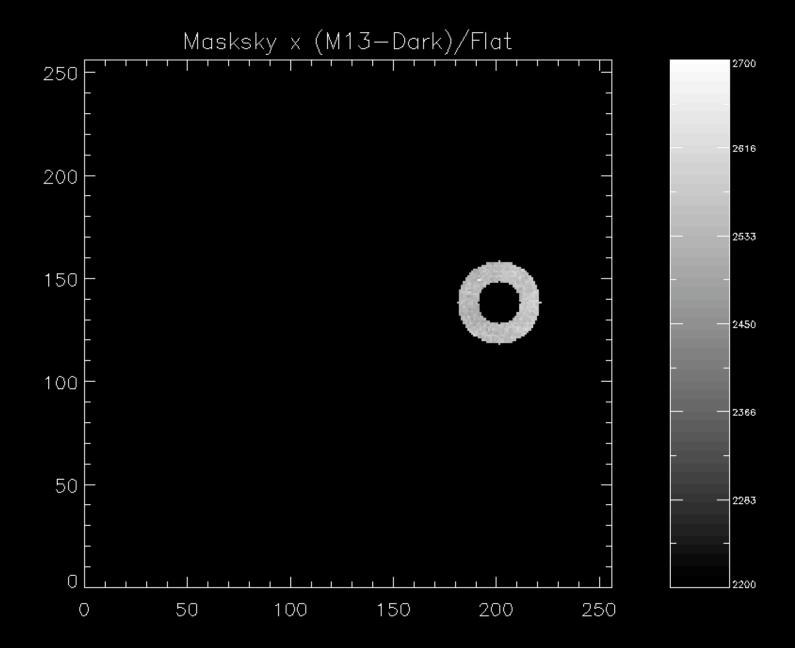












Computing the Centroid

```
skyval = median( px[wsky] )
print, 'Median sky value = ',skyval

; compute the pixel centroids

xbar = total(mask*xx * (px-skyval) )/total(mask*(px-skyval))
ybar = total(mask*yy * (px-skyval))/total(mask*(px-skyval))

print,'<x> = ', xbar
print,'<y> = ', ybar
```

Step 3: Modeling the Noise

- What is the SNR of a given observation?
- How do I choose and optimize the photometric parameters
 - Exposure time required?
 - Aperture diameter?
 - Location and size of sky annuli?

How to Begin

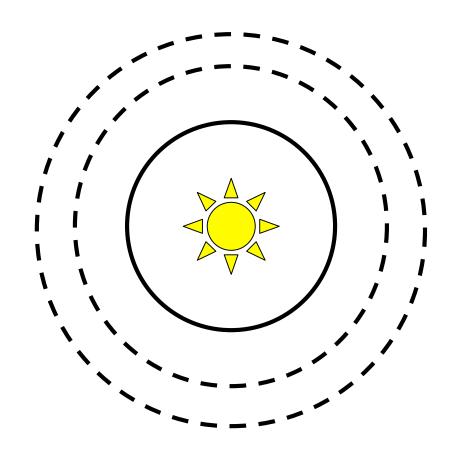
- Write down an expression for the signal and use error propagation to find the noise
 - Express results as signal-to-noise ratio vs.
 photometric parameters

The Model

- The purpose is to *estimate* the noise contributions
 - Often getting the answer to within a factor of two is fine
 - Make simplifying assumptions—so long as you can justify them

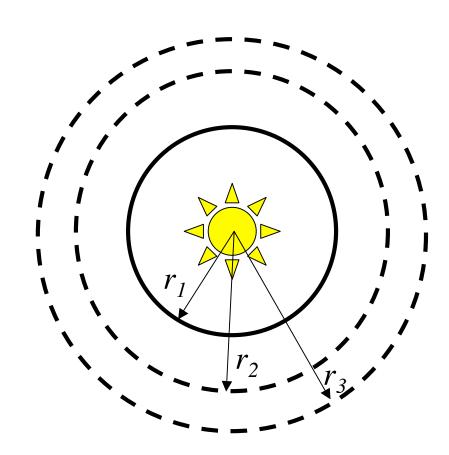
A Photometric Model

• What parameters describe the measurement?



A Photometric Model

- Star
 - Brightness
 - Center (x_0, y_0)
 - Width (σ)
- Sky background in annulus
 - -B
- Detector
 - *QE*, readnoise, dark current
- Aperture sizes
 - r_1, r_2, r_3



Photometric Model

- Write down an expression for the signal, S_i , in units of photoelectrons
 - In an individual pixel

$$S_i = F_i + B_i + Q_i + E_i$$

- F_i is the stellar signal = $f_i t$ at pixel $i [e^-]$
 - Different for every pixel
- Q_i is the dark charge = $i_i t$ [e⁻] in a given pixel
 - The dark current i_i varies from pixel to pixel
 - For SNR model assume constant
- B_i is the sky background = $b_i t$ assumed uniform [e⁻]
 - Varies from pixel to pixel, for SNR model assume constant
- E_i is the readout electronic offset or bias [e⁻]
 - Varies from pixel to pixel, for SNR model assume constant

The Stellar Signal

• The stellar signal is found by subtracting the background from S_i and summing over the N pixels that contain the star

$$F_{i} = S_{i} - (B_{i} + Q_{i} + E_{i})$$

$$F_{N} = \sum_{i=1}^{N_{1}} F_{i} = \sum_{i=1}^{N_{1}} S_{i} - (B_{i} + Q_{i} + E_{i})$$

$$N_{1} = \pi r_{1}^{2}$$

- Error in F_N is due to noise in in the signal itself, F_N
- Noise due to dark charge, Q_i
- Noise from the background, B
- The read out noise σ_{RO}

Noise Sources

$$F_N = \sum_{i=1}^{N_1} F_i = \sum_{i=1}^{N_1} \left[S_i - \underbrace{\left(B_i + Q_i + E_i\right)}_{\textit{Background}} \right]$$

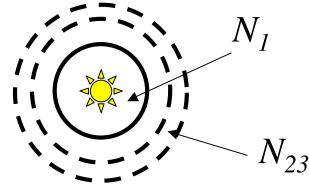
 $\langle B \rangle$ = average sky/pixel & $\langle Q \rangle$ the average dark charge/pixel

$$\sigma_F^2 = \underbrace{F_N}_{\text{Poisson signal noise}} + \underbrace{N_1(\langle B \rangle + \langle Q \rangle + \sigma_{RO}^2)}_{\text{Poisson noise within } r_1} + \underbrace{N_1\sigma_{Sky}^2}_{\text{Sky is the error in the sky measured between } r_2 \& r_3$$

$$\sigma_{Sky}^2 = (\langle B \rangle + \langle Q \rangle + \sigma_{RO}^2) / N_{23}$$

Every pixel between r_2 & r_3 contributes to the accuracy of the sky measurement

$$N_1 = \pi r_1^2$$
, $N_{23} = \pi r_3^2 - \pi r_2^2$



Noise Sources

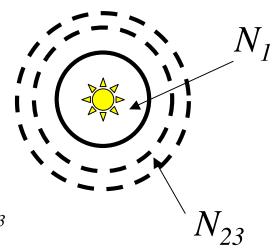
$$F_N = \sum_{i=1}^{N_1} F_i = \sum_{i=1}^{N_1} \left[S_i - \underbrace{\left(I_i + B_i + E_i\right)}_{\textit{Background}} \right]$$

 $\langle B \rangle$ = average sky/pixel & $\langle Q_d \rangle$ the average dark charge/pixel

$$\sigma_F^2 = \underbrace{F_N}_{\text{Poisson signal noise}} + \underbrace{N_1 \left(\left\langle B \right\rangle + \left\langle Q_d \right\rangle + \sigma_{RO}^2 \right)}_{\text{Poisson noise within } r_1} + \underbrace{N_1 \left(\left\langle B \right\rangle + \left\langle Q_d \right\rangle + \sigma_{RO}^2 \right) / N_{23}}_{\text{Poisson noise within } r_2 < r < r_3}$$

$$N_1 = \pi r_1^2$$
, $N_{23} = \pi r_3^2 - \pi r_2^2$

- How do we choose r_1 , r_2 , r_3 ?
 - Signal increases with N_1
 - Noise increases with N_1 and decreases with N_{23}



Signal-to-Noise

$$SNR = \frac{\overbrace{F_{N}}^{Signal}}{\sqrt{\sum_{Signal Noise} + \underbrace{N_{1}(\langle B \rangle + \langle Q \rangle + \sigma_{RO}^{2})}_{SkyDark \& RON} + \underbrace{N_{1}(\langle B \rangle + \langle Q \rangle + \sigma_{RO}^{2}) / N_{23}}_{SkyDark \& RON}}_{in star aperture}$$

- How do we choose r_1 , r_2 , r_3 ?
 - Signal increases with N_1
 - Noise increases with N_1 and decreases with N_{23}

An Example

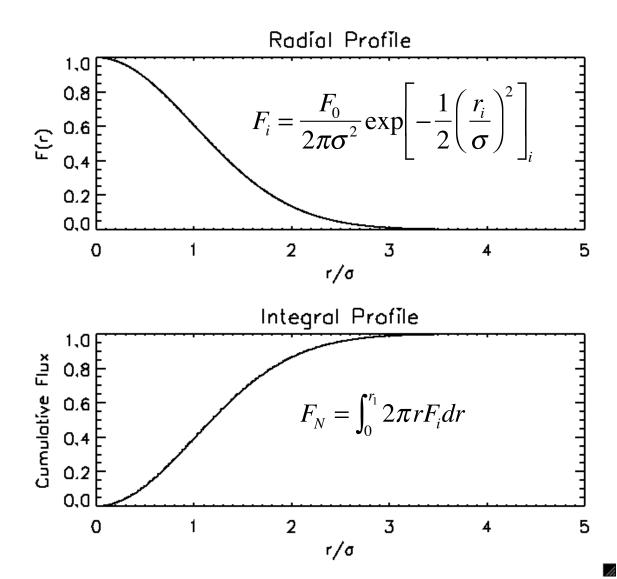
• Suppose the stellar signal has a 2-d Gaussian shape

$$F_{i} = \frac{F_{0}}{2\pi\sigma^{2}} \exp\left[-\frac{1}{2}\left(\frac{r_{i}}{\sigma}\right)^{2}\right]_{i}, \quad r_{i}^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}$$

$$F_N = \int_0^{r_1} 2\pi r F_i dr$$

– This tells us how F_N changes with aperture radius

Star Profile & Integral



SNR vs. r_1

•
$$F_0 = 100 \text{ e}^{-1}$$

•
$$B_i = 100 e^{-1}$$

•
$$I_i = 0 e^{-1}$$

•
$$\sigma_{RO} = 10 e^{-} rms$$

•
$$N_{23} >> N_1$$

