
Some Useful LATEX Knowledge

Tristan Lewis - tlewis@ugastro.berkeley.edu∗

September 11, 2006

Foreword

The purpose of this paper is to help you understand some of the fundamentals
behind editing a LATEX document. One motivator behind this is that both in my

experience of learning LATEX on the fly as well as seeing others do the same thing, I
realized that we rarely understood how and why the various commands that we
commonly use worked. This led to the practice of memorizing each and every

command that we ever wanted to use—a task that is inefficient as well as inflexible.
I hope that by grasping a more general understanding of the way LATEX operates,
you will be able to avoid the daunting task of trying to memorize every command
you will want to use in your documents and also be able to apply your generalized

knowledge in order to figure out new tasks that you might want to tackle. The
important thing to remember is that LATEX really is a language; one that has its

own vocabulary, punctuation, and syntax which for the most part are very
consistent and systematic. Understanding this systematic behavior is one of the

best ways to become a true LATEX guru.

1 Starting Your Document

Every document in LATEX needs to start off (and end with) several basic commands.
There are also a few optional commands that can make your life easier by adding titles
and dates to your paper. For example, the document you are now reading starts and
ends with the following lines:

\documentclass[12pt]{article}

\title{Some Useful \LaTeX\, Knowledge}

\author{Tristan Lewis - tlewis@ugastro.berkeley.edu} \date{}

∗Please e-mail me with any questions, comments, corrections, or suggestions for future versions
of this document.

1

\begin{document}

\maketitle

[body of document here]

...

\end{document}

The \documentclass command sets up what kind of document this will be; in
this case, the supplied argument article is provided within a set of curly brackets.
There is also an optional parameter in square brackets to make the body text size
12pt. The next three commands, \title, \date, and \author, define the title, date,
and author, which will go into making the title. Then there is the all-important
\begin{document} call, which every document needs. This lets the compiler know
that your document has actually begun, and it should be entered before any of the
document’s text makes its way into the file. The call to \maketitle will use the
supplied title, date and author to create a large title for your paper on the first page.
Finally, \end{document} finishes off the environment that was started all the way
at the beginning with the \begin{document} and tells the compiler what should
be obvious from the command: that the document has ended. Remember that any
environment you enter with a \begin{} command must be closed off by a subsequent
\end{} command.

2 Counters and Environments

There are a few LATEX counters and environments that will be necessary to master
in order to write lab reports which effectively communicate what you have learned
and accomplished over the course of your lab assignment. Counters are things are
counted and kept track for you by LATEX , such as sections, subsections, and figures.
Environments are specific modes of operation within a given portion of your docu-
ment. What follows is an overview of the essential counters and environments you’ll
need to become familiar with.

2.1 Sections

Organization is key in any paper, and a scientific paper is no exception. Splitting your
document into smaller, cohesive elements which focus on specific topics is beneficial
to both the reader and the author. LATEX makes it easy to to this with sections.
To begin a section, you simply need to use the \section{} command, where the
argument to be placed in the curly brackets is the name of the section. If you need
further levels of detail within a single section, you can also make use of subsections,

2

which you call predictably enough with the \subsection{} command. Sections and
subsections are numbered automatically by the compiler for you1.

2.2 Math Mode

Let’s admit it: easy and professional-looking typesetting of mathematical expressions
is one of the biggest reasons that LATEX is useful to people like mathematicians and
astronomers. This great capability can’t be taken advantage of in normal paragraph
mode though—you must first enter something called math mode. The most basic way
you can do this is by placing such expressions in-line in a normal paragraph. To do
this, you need to simply surround the mathematical expression with a dollar sign,
$, on either side. So, placing β in my otherwise normal sentence will yield
a β, and so on. We can also place more complicated mathematical expressions in
as well, such as: x̄ = 1

N

∑
N

i
xi. However, this example illustrates that when adding

some expressions in-line, especially ones containing fractions or integral signs and
summations with specified limits, it comes out a little squished together and can even
affect the line spacing of your document. To avoid this you can utilize the next flavor
of entering math mode: math expressions.

Entering a math expression is just as easy as adding in-line math. The only
difference is you need to surround your expression by double dollar signs, $$. Let’s
see what the math expression code looks like for x̄ equation entered above:

$$

\bar{x} = \frac{1}{N}\sum_{i}^{N}x_{i}

$$

This new way of inserting math looks like this when compiled:

x̄ =
1

N

N∑

i

xi

The expression receives its own space on the page, which really allows it look as
professional and elegant as it possibly can. Also, summation or integration limits are
placed on the top and bottom of the summation or integral sign where they belong.

The final method involves the creation of a formula, and yields a result very similar
to the previous method of math expression. The only difference in syntax is that you
must surround the expression with \begin{equation} and \end{equation} instead
of double dollar signs. The difference in output is that your equation is given an
numerical identity in your document which you can later use to reference it. First,
let’s see the code:

1If you want to disable the automatic numbering for any counter, place an asteric directly after
the counter’s type when you declare it (eg: \section*{Foreword}).

3

\begin{equation} \label{meaneq}

\bar{x} = \frac{1}{N}\sum_{i}^{N}x_{i}

\end{equation}

And now for the result:

x̄ =
1

N

N∑

i

xi (1)

I included a new command, \label{} to give this equation a name that I can refer to
later in the document with another command, \ref{}. Hence now that I’ve labeled
this equation as meaneq, I can later type \ref{meaneq} in my document to render
whatever equation number it happens to be (in this case, 1). The best part of this
is that if I end up going back and putting another equation before this one, LATEX
will do all the work in renumbering the equations and update all instances of meaneq
with its new equation number.

2.3 Figures

Figures are nice. Figures break up text, add eye-candy, and (hopefully) convey useful
information that would be impossible to get across with the use of words alone. The
best way to see how to add figures is simply to look at a sample of code, such as the
following:

\documentclass[12pt]{article}

\usepackage{epsfig}

...

\begin{figure}[htb]

\begin{center}

\epsfig{angle=90, width=.65\textwidth, file=fig1.eps}

\caption{This plot shows the line y=x} \label{linplot}

\end{center}

\end{figure}

The first thing to take from this example is that we need to tell the compiler that
we’re going to be using a special package that allows the insertion of .eps files into
our document. To do this, you need to use the \usepackage{} command after you
declare your document class at the beginning of the file. For .eps files, you’ll use the
epsfig package.

Now let’s move on to the placement of the image. First, we see that like other
environments, this figure environment is being delimited with \begin{figure} and
\end{figure}. The argument to \begin{figure} in square brackets has to do with
the figure placement. LATEX likes to have its own say as to exactly where your figures

4

get placed, but you can give it some priority by adding a list of locations in square
brackets, where h means here, t means top of page, and b means bottom of page.
Furthermore, you can stress your preference by adding an exclamation mark, !, in the
first spot. So, if you really want LATEX to put your graphic exactly where it appears
in the .tex code, you can use [!h] and hope it listens to you.

Next, we begin a new environment, center, which will center everything within
itself. Then comes the actual call to \epsfig{} which places the graphic in the output
file. The only required argument is file=, but there are other optional ones such as
height, width, and angle. The units for height and width must be specified—
such as 5in or 10cm. Another useful unit you can use is \textwidth, which is the
document’s global variable that describes what width the text spans on paper. In
my example above, I chose to make the graphic span 65% of the text width, so I
used width=.65\textwidth. The angle units are degrees counter-clockwise from the
image’s original orientation2.

Two more commands you can throw in before you end your figure environment
are \caption{} and \label{}. Caption places a caption underneath the figure, and
labeling the figure works just as it did with equations, where you can later refer back
to the figure’s label name (in this case, linplot), with the \ref{} command. The
last two commands simply end the environments that were started here in the reverse
order that they were started. Figure 1 shows how our figure came out.

0 10 20 30 40 50
0

10

20

30

40

50

Figure 1: This plot shows the line y=x

2The order in which you specify the height, width, and angle transformations to your graphic
is the same order that the compiler applies them. Thus, if you change the image’s width and then

rotate it, what you’ll have changed is actually the height of the inserted image.

5

LATEX also has the capability to work with normal post-script files (non-encapsulated).
The first difference in this case is that instead of using the epsfig package, you
will need to use one called graphicx. Then to insert an image, you will use the
\includegraphics{} command. Let’s look at what the code to insert a post-script
file of the same parameters as the previous example would look like:

\documentclass[12pt]{article}

\usepackage{graphicx}

...

\begin{figure}[htb]

\begin{center}

\includegraphics[angle=90, width=.65\textwidth]{fig1.ps}

\caption{This is also a plot of the line y=x} \label{linplot}

\end{center}

\end{figure}

Using \includegraphics{} is slightly different than using \epsfig{} because
now the only argument to go into the curly brackets is the filename of the post-script
file. To specify optional argument that control the sizing and rotation of the file, put
those arguments in square brackets right after the includegraphics. Note that you
can easily use both .eps and .ps in a document by including both the epsfig and
graphicx packages (\usepackage{epsfig, graphicx}).

2.4 Tables and Tabular

Tables can be an effective way to present data (especially numerical data) in a con-
densed, easy-to-read fashion. Let’s say I wanted to compare the theoretical values
for a quantity, Γ(α), with the measured values at different values of α ranging from
0-10. Here’s what a table illustrating these values might look like:

α Γmeas Γtheor

0 3.4 3.2
2 5.6 5.3
4 10.5 10.8
6 24.6 22.5
8 30.1 28.9

10 37.8 34.0

First let’s examine this table’s code:

6

\begin{center}

\begin{tabular}{r|c|c}

α & Γ_{meas} & Γ_{theor} \\ \hline \hline

0 & 3.4 & 3.2 \\

2 & 5.6 & 5.3 \\

4 & 10.5 & 10.8 \\

6 & 24.6 & 22.5 \\

8 & 30.1 & 28.9 \\

10 & 37.8 & 34.0

\end{tabular}

\end{center}

We’re already familiar with the center environment so let’s start at the sec-
ond line, which introduces us to the tabular environment. The second set of curly
brackets after the environment begin statement defines the format of the tabular en-
vironment’s columns. Each letter represents a single column, and each vertical pipe
(|) defines a vertical line drawn between the columns. The most common letters to
choose from for defining columns are r, l, and c, which determine whether the column
data will be right justified, left justified, or centered.

After specifying how the columns behave, the table content can then be entered.
We do this row-by-row, using the ampersand (&) to switch over to the next column
for each row. In this way I specify my first row of values, α, Γmeas, and Γtheor, which
act as my column headers. With that row’s three columns specified, it’s time to tell
the compiler that I want to move down to the next row, which is accomplished with
double backslashes, \\. For this table, I’ve chosen to add two horizontal lines with
\hline after the column headings. Then I proceed with the subsequent rows’ entries,
making sure to include a \\ after each one until I reach the end. At this point all
that’s left to do is end the tabular and center environments that I began above.
An important note is that the way I decided to space out the columns in my code
has no effect on how the table is generated—I chose to line up the column dividers
simply for readability in the .tex file.

Tables are usually fairly important components of lab reports, and for this reason
you’ll likely want to have your table numbered and captioned just like your figures
and equations. To do this, the only thing you need to do is place your tabular

environment within a table environment like the following3:

\begin{table}[htb]

\begin{center}

\begin{tabular}{c | c | c} [table entries]

...

3Remember that like the Equation and Figure environments, you should include a placement
specifier when declaring any Table environments.

7

\end{tabular}

\end{center}

\caption{This is my table caption.} \label{examptab}

\end{table}

The tabular environment is very flexible, and isn’t limited to being used just
with the table environment. An example of this is using tabular to place multiple
graphics together within a single figure. Here’s how you might do this to create a
figure with 2 rows and 2 columns of graphics:

\begin{figure}[!htb]

\begin{center}

\begin{tabular}{c c}

\includegraphics[angle=90, width=.5\textwidth, height=.4\textwidth]{fig1.ps} &

\includegraphics[angle=90, width=.5\textwidth, height=.4\textwidth]{fig1.ps}\\

(a) & (b) \\

\includegraphics[angle=90, width=.5\textwidth, height=.4\textwidth]{fig1.ps} &

\includegraphics[angle=90, width=.5\textwidth, height=.4\textwidth]{fig1.ps}\\

(c) & (d)

\end{tabular}

\end{center}

\caption{(a)---A plot of y=x; (b)---Another plot of y=x; (c)---Yet another

plot of y=x; (d)---The last plot of y=x, I swear} \label{quadplot}

\end{figure}

While this table code is much more complicated than cases where you are just
entering numeric data, it should turn out as expected as long as you keep track of
your column and row divisions. Figure 2 shows how the example four-graphic figure
above is rendered.

3 Font Families, Series, and Shapes

LATEX contains three main font families, which are analogous to the different fonts
that are accessible from your run-of-the-mill word processor (i.e. Word). These are
Roman, Sans Serif, and Typewriter, with Roman being the default. To apply these
families to text, you can use the \textrm{}, \textsf{}, and \texttt{} commands,
respectively, with the target text appearing between the curly brackets. While in a
lab report you will probably not have any use for the two other fonts, it is useful to
know how to manually set the font to Roman in cases where you are in math mode.
For example, if I want to typeset a formula that provides the number of angular
degrees in 2π radians (and include the word radians in the equation), I could code it
as following:

8

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

(a) (b)

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

(c) (d)

Figure 2: (a)—A plot of y=x; (b)—Another plot of y=x; (c)—Yet another plot of
y=x; (d)—The last plot of y=x, I swear.

\begin{equation}

360^{\circ} = 2\pi radians

\end{equation}

and get this out from the compiler:

360◦ = 2πradians (2)

We quickly notice that while in the equation environment, every character is
considered a mathematical expression, making normal words appear in the strange
curly math font and ignoring spaces completely. We can get around this by explicitly

9

telling LATEX to make the word radians (along with a proceding space, since spaces
are ignored in math mode) to be typeset in the Roman font family like this:

\begin{equation}

360^{\circ} = 2\pi \textrm{ radians}

\end{equation}

to achieve a much better result:

360◦ = 2π radians (3)

Also present in LATEXare font series and shapes. Essentially, these allow you to
make your text bold-faced, emphasized, italicized, or slanted. These can be useful
if you wish to add the occassional stylistic touch to your words. The \textbf{},
\emph{}, \textit{}, and \texts{} commands, respectively, let you use these fea-
tures.

4 Special Symbols

There are oodles are special symbols available for use in LATEX—so many that it would
be futile for me to try to outline them all here. Luckily, there are some good sources on
the internet for you to reference when you’re just aching to stick that proportionality
sign or real numbers symbol into one of your equations. An extensive list can be found
at http://omega.albany.edu:8008/Symbols.html or just Google “latex symbols” for
all the information you’d ever need.

10

